开发多币种 EA 交易(第 24 部分):添加新策略(一)
在本文中,我们将研究如何将新策略连接到我们创建的自动优化系统。让我们看看我们需要创建哪些类型的 EA,以及是否可以在不更改 EA 库文件的情况下完成,或者尽量减少必要的更改。
在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)
本文详细介绍如何利用第一篇开发的状态检测器,构建一个自适应的智能交易系统(MarketRegimeEA)。该系统能够根据趋势、震荡或高波动市场,自动切换交易策略与风险参数。文中涵盖了实用的参数优化、状态过渡处理以及多时间周期指标的应用。
在MQL5中构建自定义市场状态检测系统(第一部分):指标
本文详细介绍了如何使用自相关和波动性等统计方法,在MQL5中创建一个市场状态检测系统。文中提供了用于分类趋势、盘整和波动行情的类代码,以及一个自定义指标。
基于MQL5中表模型的表类和表头类:应用MVC概念
本文是致力于使用MVC(模型-视图-控制器)架构范式在MQL5中实现表模型系列文章的第二部分。本文基于先前创建的表模型来开发表类和表头。已经开发的类将构成进一步实现视图和控制器组件的基础,这些内容将在随后的文章中讨论。
在 MQL5 中创建交易管理员面板(第十部分):基于外部资源的界面
今天,我们将深入挖掘 MQL5 的潜力,利用外部资源(例如 BMP 格式的图片)为交易管理面板打造独具风格的主界面。文中演示的策略在打包多种资源(包括图片、声音等)以实现高效分发时尤为实用。欢迎随我们一起探讨,如何利用这些功能为我们的 New_Admin_Panel EA 实现现代、美观的界面设计。
MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)
本文将指导您从头开始构建自定义 Heikin Ashi 指标,并演示如何将自定义指标集成到 EA 中。它涵盖了指标计算、交易执行逻辑和风险管理技术,以增强自动化交易策略。
纯 MQL5 货币对强弱指标
我们将在 MQL5 中开发货币强势分析的专业指标。这本分步指南将向你展示如何为 MetaTrader 5 开发一款功能强大的交易工具,该工具带有可视化仪表板。您将学习如何计算多个时间周期(H1、H4、D1)内货币对的强度,实现动态数据更新,并创建用户友好的界面。
交易中的资本管理和带有数据库的交易者家庭会计程序
交易者如何管理资金?交易者和投资者如何跟踪支出、收入、资产和负债?我不仅要向你介绍会计软件;我将向您展示一个工具,它可能会成为您在波涛汹涌的交易海洋中可靠的金融导航器。
交易中的神经网络:层次化双塔变换器(Hidformer)
我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
重构经典策略(第十四部分):高胜率交易形态
高胜率交易形态在交易圈内广为人知,但遗憾的是,其定义始终缺乏明确标准。本文将通过实证研究与算法建模,为高胜率形态构建量化定义框架,并探索其识别与运用方法。借助梯度提升树模型,我们演示如何系统性优化任意交易策略的性能,同时以更精准、可解释的方式向计算机传达交易指令的核心逻辑。
使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备
在本文中,我们通过将经济日历数据作为非实盘分析资源嵌入到MQL5交易系统中,为策略测试做好准备。我们实现了按时间、货币和影响程度加载和筛选事件的功能,并在策略测试器中验证其有效性。这使得基于新闻事件的策略能够进行高效的回测。
从新手到专家:对K线进行编程
在本文中,我们将迈出 MQL5 编程的第一步,即使是完全零基础的初学者也能上手。我们将向您展示,如何将熟悉的 K线形态 转换为一个功能完备的自定义指标。K线形态之所以有价值,是因为它们反映了真实的价格行为,并预示着市场的转变。与其手动扫描图表——这种方法容易出错且效率低下——我们将讨论如何通过一个指标来自动化这个过程,该指标会自动识别并标记出这些形态。在此过程中,我们将探讨一些关键概念,例如索引、时间序列、平均真实波幅(用于在多变的市场波动性中提高准确性),以及如何开发一个可自定义、可复用的 K线形态库,以便在未来的项目中使用。
MQL5中表格模型的实现:应用MVC概念
在本文中,我们将探讨如何使用MVC(模型-视图-控制器)架构模式在MQL5中开发表格模型,该模式可将数据逻辑、展示和控制进行分离,从而实现结构化、灵活且可扩展的代码。我们将考虑实现用于构建表格模型的各类,包括使用链表来存储数据。
开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)
我们的目标是创建一个系统,用于自动定期优化最终 EA 中使用的交易策略。随着系统的发展,它变得越来越复杂,因此有必要不时地将其视为一个整体,以确定瓶颈和次优解决方案。
开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡
如果要自动进行周期性优化,我们需要考虑自动更新交易账户上已经运行的 EA 设置。这样一来,我们就可以在策略测试器中运行 EA,并在单次运行中更改其设置。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)
针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)
我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
混沌博弈优化(CGO)
本文提出了一种新型元启发式算法——混沌博弈优化算法(CGO),该算法在处理高维问题时展现出独特的保持高效率的能力。与大多数优化算法不同,CGO在问题规模扩大时不仅不会降低性能,有时甚至还会提升性能,这便是其关键特性。
从基础到中级:结构(一)
今天,我们将开始以更简单、更实用、更舒适的方式研究结构。结构是编程的基础之一,无论它们是否结构化。我知道很多人认为结构只是数据的集合,但我向你保证,它们不仅仅是结构。接下来,我们将以最富启发性的方式开始探索这个全新的宇宙。
将人工智能(AI)模型集成到已有的MQL5交易策略中
本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。
价格行为分析工具包开发(第二十部分):外部资金流(4)——相关性路径探索器
作为价格行为分析工具包开发系列的一部分,相关性路径探索器为理解货币对动态提供了一种全新方法。该工具可自动收集和分析数据,深入分析诸如欧元兑美元(EUR/USD)和英镑兑美元(GBP/USD)等货币对之间的相互作用。借助其实用、实时的信息,增强你的交易策略,助您更有效地管理风险并发现机会。
市场模拟(第七部分):套接字(一)
套接字,你知道它们在 MetaTrader 5 中的用途或使用方法吗?如果答案是否定的,那么让我们从研究它们开始。在今天的文章中,我们将介绍一些基础知识。由于有几种方法可以做同样的事情,而且我们总是对结果感兴趣,我想证明确实有一种简单的方法可以将数据从 MetaTrader 5 传输到其他程序,如 Excel。然而,主要目的不是将数据从 MetaTrader 5 传输到 Excel,而是相反,即将数据从 Excel 或任何其他程序传输到 MetaTrader 5。
风险管理(第二部分):在图形界面中实现手数计算
在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
解密开盘区间突破(ORB)日内交易策略
开盘区间突破(ORB)策略基于这样一种理念:市场开盘后不久确立的初始交易区间,反映了买卖双方就价格价值达成共识的重要水平。通过识别突破某一特定区间上方或下方的走势,交易者可以把握随之而来的市场契机——当市场方向愈发明朗时,这种契机往往会进一步显现。本文将探讨三种源自康克瑞图姆集团(Concretum Group)改良的ORB策略。
创建动态多货币对EA(第二部分):投资组合多元化与优化
投资组合多元化与优化旨在将投资有策略地分散配置于多种资产之上,在最小化风险的同时,依据风险调整后的绩效指标挑选出最理想的资产组合,从而实现回报最大化。
从基础到中级:模板和类型名称 (五)
在本文中,我们将探讨模板的最后一个简单用例,并讨论在代码中使用 typename 的好处和必要性。虽然这篇文章乍一看可能有点复杂,但为了以后使用模板和 typename,正确理解它很重要。
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别
降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel
许多人,尤其是非程序员,发现在 MetaTrader 5 和其他程序之间传输信息非常困难。其中一个程序就是 Excel。许多人使用 Excel 作为管理和维护风险控制的一种方式。这是一个优秀的程序,易于学习,即使对于那些不是 VBA 程序员的人来说也是如此。在这里,我们将看看如何在 MetaTrader 5 和 Excel 之间建立连接(一种非常简单的方法)。
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)
在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
让手动回测变得简单:为MQL5策略测试器构建自定义工具包
在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
市场模拟(第五部分):创建 C_Orders 类(二)
在本文中,我将解释 Chart Trade 如何与 EA 交易一起处理平仓请求,以关闭用户的所有未平仓头寸。这听起来简单,但你需要知道如何应对一些复杂情况。
探索达瓦斯箱体突破策略中的高级机器学习技术
达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。