MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

SMC(订单块)是机构交易者发起大规模买入或卖出的关键区域。当价格出现显著波动后,借助斐波那契数字可识别从近期波段高点至波段低点的潜在回撤,从而锁定最佳进场位。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
创建一个基于布林带PIRANHA策略的MQL5 EA

创建一个基于布林带PIRANHA策略的MQL5 EA

在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
preview
人工喷淋算法(ASHA)

人工喷淋算法(ASHA)

本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。
preview
交易中的神经网络:对比形态变换器

交易中的神经网络:对比形态变换器

对比变换器在设计上基于单根烛条水平和整个形态来分析行情。这有助于提升行情趋势建模的品质。甚至,运用对比学习来统调烛条和形态的表示、促进自我调节,并提升预测的准确性。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
从新手到专家:MQL5中的协作式调试指南

从新手到专家:MQL5中的协作式调试指南

问题解决法能为掌握复杂技能(如MQL5编程)构建高效路径。该方法让您在专注攻克问题的同时,潜移默化地提升技能水平。解决的难题越多,大脑积累的专业知识就越深厚。就我个人而言,调试是精通编程最有效的途径。本文将带你逐步梳理代码清理流程,并探讨将杂乱程序转化为简洁高效代码的核心技巧。阅读本文,洞悉其中的宝贵见解。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
精通日志记录(第一部分):MQL5中的基础概念与入门步骤

精通日志记录(第一部分):MQL5中的基础概念与入门步骤

欢迎开启另一段探索之旅!本文是一个特别系列的开篇之作,我们将逐步创建一个专为MQL5语言开发者量身定制的日志操作库。
preview
在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

每次刷新图表、通过管理面板EA添加新交易品种或重启终端时触发的安全提示,可能会让人感觉繁琐。在本次讨论中,我们将探索并实现一项功能,该功能通过跟踪登录尝试次数来识别可信用户。在达到一定次数的失败尝试后,应用程序将切换至高级登录流程,该流程还为可能忘记密码的用户提供密码恢复功能。此外,我们还将介绍如何将加密技术有效集成到管理面板中,以增强安全性。
preview
从基础到中级:数组和字符串(三)

从基础到中级:数组和字符串(三)

本文从两个方面进行探讨。首先,标准库如何将二进制值转换为其他表示形式,如八进制、十进制和十六进制。其次,我们将讨论如何使用我们已经获得的知识,根据秘密短语确定密码的宽度。
preview
借助成交量精准洞悉交易动态:超越传统OHLC图表

借助成交量精准洞悉交易动态:超越传统OHLC图表

一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
preview
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
preview
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
preview
将互信息作为渐进特征选择的准则

将互信息作为渐进特征选择的准则

在本文中,我们展示了基于最优预测变量集与目标变量之间互信息渐进特征选择的MQL5实现。
preview
开发回放系统(第 68 部分):取得正确的时间(一)

开发回放系统(第 68 部分):取得正确的时间(一)

今天,我们将继续努力,让鼠标指针告诉我们在流动性较低期间,一根柱形上还剩下多少时间。尽管乍一看似乎很简单,但实际上这项任务要困难得多。这涉及一些我们必须克服的障碍。因此,为了理解以下部分,您必须很好地理解子系列第一部分的材料。
preview
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
preview
价格行为分析工具包开发(第二部分):分析注释脚本

价格行为分析工具包开发(第二部分):分析注释脚本

秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
preview
DoEasy.服务函数(第 3 部分):外包线形态

DoEasy.服务函数(第 3 部分):外包线形态

在本文中,我们将开发 DoEasy 库中的外包线(Outside Bar)价格行为形态,并优化访问价格形态管理的方法。此外,我们将修复在库测试中发现的错误和缺点。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
交易中的神经网络:具有相对编码的变换器

交易中的神经网络:具有相对编码的变换器

自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。
preview
基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。
preview
从基础到中级:数组和字符串(二)

从基础到中级:数组和字符串(二)

在本文中,我将展示,尽管我们仍处于编程的一个非常基本的阶段,但我们已经可以实现一些有趣的应用程序。在这种情况下,我们将创建一个相当简单的密码生成器。通过这种方式,我们将能够应用到目前为止已经解释过的一些概念。此外,我们将研究如何为一些具体问题制定解决方案。
preview
Connexus观察者模式(第8部分):添加一个观察者请求

Connexus观察者模式(第8部分):添加一个观察者请求

在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
preview
原子轨道搜索(AOS)算法:改进与拓展

原子轨道搜索(AOS)算法:改进与拓展

在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。
preview
Connexus客户端(第七部分):添加客户端层

Connexus客户端(第七部分):添加客户端层

在本文中,我们将继续开发connexus库。在本章节中,我们将构建CHttpClient类,该类负责发送请求并接收指令。我们还将介绍模拟对象(mocks)的概念,让该库与WebRequest函数解耦,从而为用户提供更强大的灵活性。
preview
开发回放系统(第 67 部分):完善控制指标

开发回放系统(第 67 部分):完善控制指标

在本文中,我们将看看通过一点代码改进可以实现什么。这一改进旨在简化我们的代码,更多地使用 MQL5 库调用,最重要的是,使其在我们未来可能开发的其他项目中更加稳定、安全和易于使用。
preview
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
preview
从Python到MQL5:量子启发式交易系统的探索之旅

从Python到MQL5:量子启发式交易系统的探索之旅

本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。
preview
在MQL5中创建交易管理员面板(第六部分):多功能界面(一)

在MQL5中创建交易管理员面板(第六部分):多功能界面(一)

交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。
preview
从基础到中级:数组和字符串(一)

从基础到中级:数组和字符串(一)

在今天的文章中,我们将开始探索一些特殊的数据类型。首先,我们将定义什么是字符串,并解释如何使用一些基本过程。这将使我们能够处理这类数据,这可能很有趣,尽管有时对初学者来说有点困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。
preview
重构经典策略(第十一部分)移动平均线的交叉(二)

重构经典策略(第十一部分)移动平均线的交叉(二)

移动平均线和随机振荡器可用于生成趋势跟踪交易信号。然而,这些信号只有在价格行为发生之后才会被观察到。我们可以有效地利用人工智能克服技术指标中这种固有的滞后性。本文将教您如何创建一个完全自主的人工智能驱动型EA,这种方式可以改进您现有的任何交易策略。即使是最古老的交易策略也可以被改进。
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
从基础到中级:运算符优先级

从基础到中级:运算符优先级

这绝对是纯理论上最难解释的问题。这就是为什么你需要练习我们在这里讨论的所有内容。虽然这起初看起来很简单,但操作符的话题只有在实践中结合不断的教育才能理解。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
preview
让新闻交易轻松上手(第五部分):执行交易(2)

让新闻交易轻松上手(第五部分):执行交易(2)

本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。