黑洞算法(BHA)
黑洞算法(BHA)利用黑洞引力原理来优化解。在本文中,我们将考察 BHA 如何在避免局部极端情况的同时,吸引最佳解,以及为什么该算法已成为解决复杂问题的强大工具。学习简单的思路如何在优化世界带来令人印象深刻的结果。
循环孤雌生殖算法(CPA)
本文提出了一种新的群体优化算法——循环孤雌生殖算法(CPA),其灵感源自蚜虫独特的生殖策略。该算法融合了两种生殖机制:孤雌生殖(无性繁殖)与有性生殖,并借助蚜虫的群体结构以及群体间的迁徙能力。算法的核心特点包括:在不同生殖策略之间自适应切换和通过“迁飞”机制实现群体间的信息交换。
开发回放系统(第 76 部分):新 Chart Trade(三)
在本文中,我们将看看上一篇文章中缺少的 DispatchMessage 代码是如何工作的。我们还会介绍下一篇文章的主题。因此,在继续下一个主题之前,了解这段代码的工作原理非常重要。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整
成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
在训练中激活神经元的函数:快速收敛的关键?
本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
开发多币种 EA 交易(第 20 部分):整理自动项目优化阶段的输送机(一)
我们已经创建了不少有助于安排自动优化的组件。在创建过程中,我们遵循了传统的循环结构:从创建最小的工作代码到重构和获得改进的代码。是时候开始清理我们的数据库了,这也是我们正在创建的系统中的一个关键组件。
您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习
柔性参与者评论者是一种利用 3 个神经网络的强化学习算法。一名参与者网络和 2 个评论者网络。这些机器学习模型按主从伙伴关系配对,其中所建模评论者能提升参与者网络的预测准确性。在这些序列中引入 ONNX 的同时,我们探讨了如何将这些思路作为由向导汇编的智能系统的自定义信号,推进测试。
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统
在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
从基础到中级:递归
在本文中,我们将探讨一个非常有趣且颇具挑战性的编程概念,尽管应该非常谨慎地对待它,因为它的误用或误解会将相对简单的程序变成不必要的复杂程序。但是,当正确使用并完全适应同样合适的情况时,递归成为解决问题的绝佳盟友,否则这些问题会更加费力和耗时。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
人工部落算法(ATA)
文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
重新定义MQL5与MetaTrader 5指标
MQL5中一种创新的指标信息收集方法,使开发者能够向指标传递自定义输入参数以进行即时计算,从而实现了更灵活、更高效的数据分析。这种方法在算法交易中尤为实用,因为它能突破传统限制,增强对指标所处理信息的掌控力。
价格行为分析工具包开发(第九部分):外部数据流
本文将利用专为高级分析而设计的外部库,探索一个全新的分析维度。这些库(如pandas)提供了强大的工具,用于处理和解读复杂数据,使交易者能够更深入地洞察市场动态。通过整合此类技术,我们能够整合原始数据与可执行策略之间的差距。加入我们,共同为这一创新方法奠定基础,并释放技术与交易专业知识相结合的潜力。
开发回放系统(第 75 部分):新 Chart Trade(二)
在本文中,我们将讨论 C_ChartFloatingRAD 类。这就是 Chart Trade 发挥作用的原因。然而,解释并未就此结束,我们将在下一篇文章中完成它,因为这篇文章的内容相当广泛,需要深入理解。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
价格行为分析工具包开发(第八部分):指标看板
作为价格行为分析领域最强大的工具之一,指标看板(Metrics Board)旨在通过一键操作简化市场分析流程,实时提供关键市场指标数据。每个功能按钮均对应特定的功能,无论是分析高/低趋势、交易量还是其他关键指标。该工具能在您最需要的时候提供精准、实时的数据。让我们通过本文更深入地了解它的功能。
使用MQL5和Python集成经纪商API与智能交易系统
在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
交易中的神经网络:多智代自适应模型(终篇)
在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。
掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识
本文继续针对初学者的系列文章。在这里我们将讨论开发 EA 交易的基本原则。我们将创建两个 EA:第一个 EA 不使用指标进行交易,使用挂单,第二个 EA 将基于标准 MA 指标,以当前价格开仓。在这里,我假设你不再是一个完全的初学者,并且对前几篇文章中的材料有相对较好的掌握。
在MQL5中实现基于经济日历新闻事件的突破型智能交易系统(EA)
重大经济数据发布前后市场波动率通常显著上升,为突破交易策略提供了理想的环境。在本文中,我们将阐述基于经济日历的突破策略的实现过程。我们将全面覆盖从创建用于解析和存储日历数据的类,到利用这些数据开发符合实际的回测系统,最终实现实盘交易执行代码的完整流程。
日志记录精通指南(第三部分):探索日志处理器(Handlers)实现方案
在本文中,我们将探索日志库中"处理器"(handlers)的概念,理解其工作原理,并创建三种基础实现:控制台、数据库和文件。我们将覆盖从处理器的基本结构到实际测试,为后续文章中的完整功能实现奠定基础。
迁移至 MQL5 Algo Forge(第 3 部分):在您自己的项目中使用外部仓库
让我们探索如何开始将 MQL5 Algo Forge 存储中任何仓库的外部代码集成到您自己的项目中。在本文中,我们最后转向这个有前景但更复杂的任务:如何在 MQL5 Algo Forge 中实际连接和使用来自第三方仓库的库。
基于隐马尔可夫模型的趋势跟踪波动率预测
隐马尔可夫模型(HMMs)是强大的统计工具,可通过分析可观测的价格波动来识别潜在的市场状态。在交易领域,隐马尔可夫模型通过建模和预测市场状态的转变,可提升波动率预测的准确性,并为趋势跟踪策略提供依据。在本文中,我们将完整介绍一种趋势跟踪策略的开发流程,该策略利用隐马尔可夫模型预测波动率,并将其作为交易信号的过滤条件。
从基础到中级:联合(二)
今天我们有一篇非常有趣的文章。我们将研究联合并尝试解决之前讨论的问题。我们还将探讨在应用程序中使用联合时可能出现的一些不寻常的情况。此处提供的材料仅用于教学目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)
借助“信号脉冲(Signal Pulse)”这款MQL5智能交易系统(EA),释放多时间框架分析的潜力。该EA整合了布林带(Bollinger Bands)和随机震荡器(Stochastic Oscillator),以提供准确、高概率的交易信号。了解如何实施这一策略,并使用自定义箭头有效直观地显示买入和卖出机会。非常适合希望借助多时间框架的自动化分析来提升自身判断能力的交易者。
开发回放系统(第 74 部分):新 Chart Trade(一)
在本文中,我们将修改本系列关于 Chart Trade 中显示的最后一段代码。这些变化对于使代码适应当前的回放/模拟系统模型是必要的。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
分析交易所价格的二进制代码(第一部分):技术分析的新视角
本文提出了一种基于将价格波动转换为二进制代码的技术分析创新方法。作者展示了市场行为的各个方面——从简单的价格波动到复杂形态——如何被编码为一系列的0和1。
《精通日志记录(第二部分):格式化日志》
在本文中,我们将探讨如何在类库中创建和应用日志格式化工具。我们将从格式化工具的基本结构讲起,一直到样例的实现。到本文结束时,您将掌握在该库中格式化日志的必要知识,并理解其背后的工作原理。
从基础到中级:联合(一)
在这篇文章中,我们将探讨什么是联合。在这里,通过实验,我们将分析可以使用联合的第一种构造。然而,这里展示的只是后续文章将涵盖的一组概念和信息的核心部分。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)
本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略
金融市场通常被静态划分为震荡市或趋势市两种模式。这种简化分类虽便于短期交易决策。然而,却与真实市场行为脱节。在本文中,我们将深入探讨市场如何精准地在这两种模式间切换,并利用这方面的认知提升算法交易策略的可靠性。
让新闻交易轻松上手(第六部分):执行交易(3)
在本文中,将实现基于新闻事件ID对单个新闻事件进行新闻筛选。此外,还将对先前的SQL查询进行改进,以提供更多信息或减少查询运行时间。另外,还将使前几篇文章中构建的代码具备实际功能。
开发回放系统(第 73 部分):不寻常的通信(二)
在本文中,我们将探讨如何在指标和服务之间实时传输信息,并了解为什么在更改时间框架时可能会出现问题以及如何解决这些问题。作为奖励,您将可以访问回放/模拟应用程序的最新版本。
交易中的神经网络:降低锐度强化变换器效率(终章)
SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
大爆炸-大坍缩(BBBC)算法
本文介绍了大爆炸-大坍缩方法,该方法包含两个关键阶段:随机点的循环生成,以及将这些点压缩至最优解。该方法结合了探索与精炼过程,使我们能够逐步找到更优的解,并开拓新的优化可能性。
重构经典策略(第十三部分):最小化均线交叉的滞后性
在我们交易者社区中,均线交叉策略已是广为人知,然而,自该策略诞生以来,其核心思想却几乎一成未变。在本次讨论中,我们将为您呈现对原策略的一项微调,其目的在于最小化该交易策略中存在的滞后性。所有原策略的爱好者们,不妨根据我们今天将要探讨的见解,来重新审视并改进这一策略。通过使用两条周期相同的移动平均线,我们可以在不违背策略基本原则的前提下,显著减少交易策略的滞后。
从基础到中级:数组(四)
在本文中,我们将看看如何做一些与 C、C++ 和 Java 等语言中实现的非常相似的事情。我说的是在函数或过程中传递几乎无限数量的参数。虽然这似乎是一个相当高级的主题,但在我看来,任何理解了前面概念的人都可以很容易地实现这里展示的内容。只要它们真的被正确理解。