MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
接受者操作特征(ROC)曲线入门

接受者操作特征(ROC)曲线入门

ROC 曲线是用于评估分类器性能的图形工具。尽管 ROC 图形相对简单,但在实践中使用它们时,仍存在一些常见的误解和误区。本文旨在为那些希望理解分类器性能评估的交易者提供一份关于 ROC 图形的入门介绍。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
preview
辩证搜索(DA)

辩证搜索(DA)

本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
preview
血液遗传优化算法(BIO)

血液遗传优化算法(BIO)

我向大家介绍我的新种群优化算法——血液遗传优化算法(Blood Inheritance Optimization,BIO),该算法的灵感源自人类血型遗传系统。在该算法中,每个解都有其自身的“血型”,这一血型决定了其进化方式。正如自然界中,孩子的血型是依据特定规则遗传而来,在BIO算法中,新解通过一套遗传与变异机制来获取自身特性。
preview
用于预测金融时间序列的生物神经元

用于预测金融时间序列的生物神经元

我们将为时间序列预测建立一个生物学上正确的神经元系统。在神经网络架构中引入类似等离子体的环境创造了一种“集体智能”,其中每个神经元不仅通过直接连接,还通过长距离电磁相互作用影响系统的运行。让我们看看神经大脑建模系统在市场上的表现。
preview
使用 Python 创建波动率预测指标

使用 Python 创建波动率预测指标

在本文中,我们将使用二元分类来预测未来的极端波动。此外,我们将利用机器学习开发极端波动预测指标。
preview
在 IBM 量子计算机上分析所有价格变动选项

在 IBM 量子计算机上分析所有价格变动选项

我们将使用 IBM 的量子计算机来发现所有价格变动选项。听起来像科幻小说?欢迎来到用于交易的量子计算世界!
preview
百年数学函数如何革新您的交易策略?

百年数学函数如何革新您的交易策略?

本文聚焦R德马赫(Rademacher)函数与沃尔什(Walsh)函数。探讨如何将这两类诞生于20世纪初的数学工具应用于金融时间序列分析,并揭示其在交易策略中的创新应用场景。
preview
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
preview
圆搜索算法(CSA)

圆搜索算法(CSA)

本文提出一种基于圆几何特性的新型元启发式优化算法——圆搜索算法(CSA)。该算法通过模拟切线方向上的点移动机制,在解空间中实现全局探索与局部开发的协同优化。
preview
在MQL5中创建交易管理面板(第九部分):代码组织(5):分析面板(AnalyticsPanel)类

在MQL5中创建交易管理面板(第九部分):代码组织(5):分析面板(AnalyticsPanel)类

在本文中,我们将探讨如何获取实时市场数据和交易账户信息,执行各种计算,并将结果展示在自定义面板上。为此,我们将深入开发一个分析面板(AnalyticsPanel)类,该类封装了所有这些功能,包括面板创建功能。这项工作是我们正在进行的新建管理面板智能交易系统(EA)扩展工作的一部分,旨在运用模块化设计原则和代码组织的最佳实践来引入高级功能。
preview
JSON 从入门到精通: 创建自己的 MQL5 版本 JSON 解读器

JSON 从入门到精通: 创建自己的 MQL5 版本 JSON 解读器

体验分步指南,创建自定义的 MQL5 版本 JSON 解析器,囊括对象和数组处理、错误检查、及序列化。通过这款灵活的解决方案,在 MetaTrader 5 中处理 JSON,获取桥接交易逻辑与结构化数据的实用见解。
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
preview
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块

在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块

欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
preview
从基础到中级:模板和类型名称(四)

从基础到中级:模板和类型名称(四)

在本文中,我们将非常仔细地研究如何解决上一篇文章末尾提出的问题。尝试创建这种类型的模板,以便能够创建数据联合的模板。
preview
MQL5 交易工具包(第 7 部分):使用最近取消的挂单函数扩展历史管理 EX5 库

MQL5 交易工具包(第 7 部分):使用最近取消的挂单函数扩展历史管理 EX5 库

了解如何完成历史管理 EX5 库中最终模块的创建,重点关注负责处理最近取消的挂单的函数。这将为您提供使用 MQL5 有效检索和存储与已取消挂单相关的关键详细信息的工具。
preview
从基础到中级:模板和类型名称(三)

从基础到中级:模板和类型名称(三)

在本文中,我们将讨论该主题的第一部分,这对初学者来说并不容易理解。为了避免更加困惑并正确解释这个话题,我们将把解释分为几个阶段。我们将把这篇文章用于第一阶段。然而,尽管在本文末尾,我们似乎已经陷入僵局,但事实上,我们将朝着另一种情况迈出一步,这将在下一篇文章中得到更好的理解。
preview
通过配对交易中的均值回归进行统计套利:用数学战胜市场

通过配对交易中的均值回归进行统计套利:用数学战胜市场

本文描述了投资组合层面的统计套利基础知识。其目标是帮助没有深厚数学知识的读者理解统计套利的原则,并提出一个概念性的起点框架。文章包含一个可运行的智能交易系统(EA)、一些关于其一年回测的笔记,以及用于复现实验的相应回测配置设置(.ini 文件)。
preview
价格行为分析工具包开发(第19部分):ZigZag分析器

价格行为分析工具包开发(第19部分):ZigZag分析器

每一位价格行为交易者都会手动使用趋势线来确认趋势,并找出潜在的转折或延续水平。在这个关于开发价格行为分析工具包的系列中,我们介绍一款专注于绘制倾斜趋势线的工具,以便于进行市场分析。该工具通过清晰地勾勒出有效价格行为评估所必需的关键趋势和水平,简化了交易者的流程。
preview
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)

MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)

了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!
preview
智能系统健壮性测试

智能系统健壮性测试

在策略开发中,有许多错综复杂的细节需要考虑,对于初学交易者其中许多都未予重视。如是结果,众多交易者,包括我自己,都不得不历经苦难来学习这些教训。本文基于我观察到的大多数初学交易者在 MQL5 上开发策略时常见的陷阱。它将提供一系列提示、技巧、和示例,帮助辨别不合格的 EA,并以一种易于实现的方式来测试我们自己 EA 的稳健性。目标是教导读者,帮助他们未来购买 EA 时避免遭遇骗局,以及预防他们自己开发策略时的错误。
preview
精通日志记录(第六部分):数据库日志存储方案

精通日志记录(第六部分):数据库日志存储方案

本文探讨如何利用数据库以结构化、可扩展的方式存储日志。内容涵盖基础概念、核心操作、MQL5中数据库处理器的配置与实现。最后验证结果,并阐述该方法在优化与高效监控方面的优势。
preview
您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数

您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数

市场促进指数是比尔·威廉姆斯(Bill Williams)的另一个指标,旨在衡量价格走势与成交量联动的效率。一如既往,我们将在由向导汇编信号类的范畴内分析该指标的各种形态,并为各种形态呈现多种测试报告和分析。
preview
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
preview
风险管理(第一部分):建立风险管理类的基础知识

风险管理(第一部分):建立风险管理类的基础知识

在本文中,我们将介绍交易风险管理的基础知识,并学习如何创建第一个函数来计算交易的适当手数以及止损。此外,我们将详细介绍这些功能的工作原理,解释每个步骤。我们的目标是清楚地了解如何在自动交易中应用这些概念。最后,我们将通过创建一个包含文件的简单脚本来将所有内容付诸实践。
preview
MQL5中的高级内存管理与优化技术

MQL5中的高级内存管理与优化技术

探索在MQL5交易系统中优化内存使用的实用技巧。学习构建高效、稳定且运行速度快的智能交易系统(EA)和指标。我们将深入探究MQL5中内存的实际运作方式、致使系统运行变慢或出现故障的常见陷阱,以及——最为关键的是——如何解决这些问题。
preview
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
preview
从基础到中级:模板和类型名称(二)

从基础到中级:模板和类型名称(二)

本文解释了如何处理您可能遇到的最困难的编程情况之一:在同一个函数或过程模板中使用不同的类型。尽管我们大部分时间只关注函数,但这里介绍的所有内容都是有用的,并且可以应用于过程。
preview
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易

数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易

当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。
preview
日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略

日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略

拉里·康纳斯(Larry Connors)是知名交易员与量化交易领域权威作家,其最著名的成果之一是2周期相对强弱指数(RSI2)策略。该指标通过捕捉短期超买超卖信号,辅助判断市场反转时机。在本文中,我们将首先阐述研究契机,随后在MQL5中复现康纳斯的三大经典策略,并应用于标普500指数差价合约(CFD)的日内交易场景。
preview
在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

本文探讨了如何优化 RSI 的水平和周期,以获得更好的交易信号。我们介绍了估算最优 RSI 值的方法,并使用网格搜索和统计模型来自动选择周期。最后,我们在 MQL5 中实现了该解决方案,同时利用 Python 进行分析。我们的方法力求务实和直接,旨在以简单的方式帮助您解决潜在复杂的问题。
preview
MQL5 交易工具包(第 6 部分):使用最新成交的挂单函数扩展历史管理 EX5 库

MQL5 交易工具包(第 6 部分):使用最新成交的挂单函数扩展历史管理 EX5 库

了解如何创建可导出函数的 EX5 模块,无缝查询和保存最近填写的挂单数据。在本全面的分步指南中,我们将通过开发专用和分隔的函数来检索最后填写的挂单的基本属性,从而增强历史管理 EX5 库。这些属性包括订单类型、设置时间、执行时间、填充类型以及有效管理和分析挂单交易历史所需的其他关键细节。
preview
财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种

财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种

在本文中,我们将利用生成式对抗网络(GAN)创建一个合成品种,涉及生成逼真的财经数据,即模仿真实市场金融产品(例如 EURUSD)的行为。GAN 模型从历史市场数据中学习形态和波动性,并创建拥有相似特征的合成价格数据。
preview
MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略

MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略

在本文中,我们将构建一个MQL5交易系统,可针对“聪明资金”(Smart Money)交易自动检测订单块。我们将阐述该策略的规则,在MQL5中实现其逻辑,并融入风险管理以实现有效的交易执行。最后,我们将对该系统进行回测,以评估其表现,并对其进行优化以获得最优结果。
preview
开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码

开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码

为了取得进一步的进展,最好看看我们是否可以通过定期重新运行自动优化并生成新的 EA 来改进结果。关于使用参数优化的许多争论中的绊脚石是,在将盈利能力和回撤保持在指定水平的同时,所获得的参数在未来一段时间内可用于交易的时间有多长。有可能做到这一点吗?
preview
时间演化旅行算法(TETA)

时间演化旅行算法(TETA)

这是我自己的算法。本文表阐述受平行宇宙和时间流概念启发的时间演化旅行算法(TETA)。该算法的基本思路是,尽管传统意义上的时间旅行是不可能的,但我们能够选择一系列事件来导致不同的现实。
preview
价格行为分析工具包开发(第十八部分):四分位理论(3)——四分位看板

价格行为分析工具包开发(第十八部分):四分位理论(3)——四分位看板

本文中,我们在原有四分位脚本的基础上新增 "四分位看板"(Quarters Board) 工具,该工具让您无需返回代码即可直接在图表上切换四分位水平。您可以轻松启用或禁用特定水平,EA还会提供趋势方向注释,帮助您更好地理解市场走势。
preview
MQL5自动化交易策略(第十一部分):开发多层级网格交易系统

MQL5自动化交易策略(第十一部分):开发多层级网格交易系统

在本文中,我们将使用MQL5开发一款多层级网格交易系统EA,重点探讨网格交易策略背后的架构与算法设计。我们将研究多层网格逻辑的实现方式以及应对不同市场状况的风险管理技术。最后,我们将提供详尽的解释和实用技巧,指导您完成自动化交易系统的构建、测试与优化。
preview
市场模拟(第三部分):性能问题

市场模拟(第三部分):性能问题

我们经常需要后退一步,然后继续前进。在本文中,我们将展示所有必要的更改,以确保鼠标和 Chart Trade 指标不会中断。作为奖励,我们还将介绍未来将广泛使用的其他头文件中发生的其他更改。