算法交易中的神经符号化系统:结合符号化规则和神经网络
本文讲述开发混合交易系统的经验,即结合经典技术分析与神经网络。作者从基本形态分析、神经网络结构、到交易决策背后的机制,提供了系统架构的详细分析,并分享了真实代码和实践观察。
价格行为分析工具包开发(第十四部分):抛物线转向与反转工具
采用技术指标分析价格行为是一种强有力的方法。这些指标通常突出显示反转和回调的关键水平,为揭示市场动态提供了宝贵的信息。在本文中,我们演示了如何开发一个使用抛物线转向(Parabolic SAR)指标生成信号的自动化交易程序。
您应当知道的 MQL5 向导技术(第 52 部分):加速器振荡器
加速器振荡指标是另一款比尔·威廉姆斯(Bill Williams)指标,它跟踪价格动量的加速,而不光是其速度。尽管很像我们在最近的一篇文章中回顾的动量(Awesome)振荡器,但它更专注于加速度,而不仅是速度,来寻求避免滞后效应。我们一如既往地验证我们可从中获得哪些形态,以及每种形态由向导汇编到智能交易系统后,在交易中具有的意义。
MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA
在本文中,我们将在 MQL5 中构建一个使用动态仓位缩放的网格交易EA。我们将涵盖策略设计、代码实现和回测过程。最后,我们将分享用于优化该自动化交易系统的关键方案和最佳实践。
价格行为分析工具包开发(第十三部分):RSI 哨兵工具
通过识别背离,可以有效地分析价格行为,而像 RSI 这样的技术指标则能提供关键的确认信号。在下面的文章中,我们将解释自动化的 RSI 背离分析如何识别趋势的延续和反转,从而为市场情绪提供宝贵的见解。
在 MQL5 中创建交易管理面板(第九部分):代码组织(二):模块化
在本次讨论中,我们进一步将 MQL5 程序分解为更小、更易于管理的模块。然后,这些模块化组件将被集成到主程序中,从而增强其组织性和可维护性。这种方法简化了我们主程序的结构,并使各个组件可以在其他EA和指标的开发中复用。通过采用这种模块化设计,我们为未来的增强功能创建了坚实的基础,这将使我们的项目和更广泛的开发者社区都受益。
在MQL5中构建带自定义画布图形的凯特纳通道(Keltner Channel)指标
本文将介绍如何在MQL5中构建一个带自定义画布图形的凯特纳通道(Keltner Channel)指标。我们将详细阐述移动平均线(MA)与平均真实波幅(ATR)计算的集成方法,以及如何增强型图表的可视化效果。此外,我们还将介绍如何通过回测评估该指标的实际交易表现,为实战交易提供有价值的参考依据。
分析交易所价格的二进制代码(第二部分):转换为 BIP39 并编写 GPT 模型
继续尝试破译价格走势……我们将通过将二进制价格代码转换为 BIP39 来获得一个“市场词典”,那么,对这个词典进行语言学分析又如何呢?在本文中,我们将深入探讨一种创新的交易所数据分析方法,并研究如何将现代自然语言处理技术应用于市场语言。
开发先进的 ICT 交易系统:在订单块指标中实现信号
在本文中,您将学习如何基于订单簿交易量(市场深度)开发订单块(Order Blocks)指标,并使用缓冲区对其进行优化以提高准确性。这结束了项目的当前阶段,并为下一阶段做准备,下一阶段将包括实施风险管理类和使用指标生成的信号的交易机器人。
交易中的神经网络:使用小波变换和多任务注意力的模型(终篇)
在上一篇文章中,我们探索了理论基础,并开始实现多任务-Stockformer 框架的方式,其结合了小波变换和自注意力多任务模型。我们继续实现该框架的算法,并评估其在真实历史数据上的有效性。
MQL5中交易策略的自动化实现(第六部分):掌握智能资金交易中的订单块(Order Block)检测技巧
在本文中,我们将运用纯粹的价格行为分析方法,在MQL5平台上实现订单块的自动化检测。我们将界定订单块的定义,实现其检测功能,并集成自动化交易执行系统。最后,我们通过回测来评估该策略的表现。
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)
市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
从基础到中级:浮点数
本文简要介绍浮点数的概念。由于这篇文章非常复杂,请仔细阅读,不要期望很快掌握浮点数系统。随着时间的推移,当你获得使用它的经验时,它才会变得清晰。但本文将帮助您理解为什么您的应用程序有时会产生与预期不同的结果。
交易中的神经网络:使用小波变换和多任务注意力的模型
我们邀请您探索一个结合小波变换和多任务自注意力模型的框架,旨在提高波动市场条件下预测的响应能力、和准确性。小波变换可将资产回报分解为高频和低频,精心捕捉长期市场趋势、和短期波动。
在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则
如何完美使用指标的原则,并不总是易于遵循。在市场行情较为平稳的情况下,指标可能会意外地给出不构成交易条件的信号,导致算法交易者错失交易机会。本文将提出一个潜在的解决方案,我们将讨论如何构建能够根据现有市场数据调整其交易规则的交易应用程序。
精通日志记录(第五部分):通过缓存和轮转优化处理程序
本文通过为处理器添加格式化器、引入用于管理执行周期的 CIntervalWatcher 类、以及采用缓存和文件轮转进行优化,并辅以性能测试和实际示例,从而改进了该日志库。通过这些改进,我们确保了一个高效、可扩展且能适应不同开发场景的日志系统。
创建MQL5交易管理员面板(第九部分):代码组织(1)
这次将深入探讨处理大型代码库时遇到的挑战。我们将探索在MQL5中进行代码组织的最佳实践,并采用一种实用方法来提升我们交易管理面板源代码的可读性和可扩展性。此外,我们致力于开发可复用的代码组件,这些组件有可能为其他开发者在其算法开发过程中带来益处。请继续阅读并参与讨论。
价格行为分析工具包开发(第10部分):外部资金流(二)VWAP
通过我们的综合指南,掌握VWAP的强大力量!学习如何使用MQL5和Python将VWAP分析集成到您的交易策略中。最大化您的市场洞察力,并改善您今天的交易决策。
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法
在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
开发回放系统(第 78 部分):新 Chart Trade(五)
在本文中,我们将研究如何实现部分接收方代码。在这里我们将实现一个 EA 交易来测试和了解协议交互是如何工作的。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:搭配预测编码的混合交易框架(终篇)
我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。
MQL5 交易工具包(第 4 部分):开发历史管理 EX5 库
通过详细的分步方法创建扩展的历史管理 EX5 库,学习如何使用 MQL5 检索、处理、分类、排序、分析和管理已平仓头寸、订单和交易历史。
价格行为分析工具包开发(第11部分):基于Heikin Ashi(平均K线)信号的智能交易系统(EA)
MQL5为开发者提供了无限可能,助您构建高度定制化的自动化交易系统。您是否知道,它甚至能执行复杂的数学运算?本文将介绍如何将日本Heikin-Ashi(平均K线)技术转化为自动化交易的策略。
迁移至 MQL5 Algo Forge(第 4 部分):使用版本和发布
我们将继续开发 Simple Candles 和 Adwizard 项目,同时还将描述使用 MQL5 Algo Forge 版本控制系统和仓库的细节。
基于LSTM的趋势预测在趋势跟踪策略中的应用
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
MQL5 简介(第 10 部分):MQL5 中使用内置指标的初学者指南
本文介绍如何使用 MQL5 中的内置指标,重点介绍如何使用基于项目的方法创建基于 RSI 的 EA 交易。您将学习获取和利用 RSI 值、处理流动性清扫以及使用图表对象增强交易可视化。此外,本文强调了有效的风险管理,包括设定基于百分比的风险、实施风险回报率以及应用风险修改来确保利润。
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略
在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。
这种方法确保了自动化交易中的精确性和适应性。
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统
本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。
开发回放系统(第 77 部分):新 Chart Trade(四)
在本文中,我们将介绍创建通信协议时需要考虑的一些措施和预防措施。这些都是非常简单明了的事情,所以我们在本文中不会详细介绍。但要了解会发生什么,您需要了解文章的内容。
逆公允价值缺口(IFVG)交易策略
当价格回到先前确定的公允价值缺口位置,且未表现出预期的支撑或阻力反应,而是无视该缺口时,便出现了逆公允价值缺口(IFVG)。这种“无视”现象可能预示着市场方向的潜在转变,并为反向交易提供优势。在本文中,我将介绍自己开发的量化方法,以及如何将IFVG作为一种策略,应用于MetaTrader 5智能交易系统(EA)中。
从基础到中级:定义(二)
在本文中,我们将继续了解 #define 指令,但这次我们将重点关注它的第二种使用形式,即创建宏。由于这个主题可能有点复杂,我们决定使用我们已经研究了一段时间的应用程序。希望您喜欢今天的文章。
精通日志记录(第四部分):将日志保存到文件
在本文中,我将向您讲解基本的文件操作,以及如何配置一个灵活的自定义处理器。我们将更新 CLogifyHandlerFile 类,以将日志直接写入文件。我们将通过在 EURUSD 上模拟一周的策略来进行性能测试,在每个 tick 生成日志,总耗时为 5 分 11 秒。其结果将在未来的文章中进行比较,届时我们将实现一个缓存系统来提升性能。
从基础到中级:定义(一)
在这篇文章中,我们将做一些许多人会觉得奇怪和完全脱离上下文的事情,但如果使用得当,这将使你的学习更加有趣:我们将能够根据这里显示的内容构建非常有趣的东西。这将使您更好地理解 MQL5 语言的语法。此处提供的材料仅用于教育目的。它不应以任何方式被视为最终应用程序。其目的不是探索所提出的概念。