通过配对交易中的均值回归进行统计套利:用数学战胜市场
本文描述了投资组合层面的统计套利基础知识。其目标是帮助没有深厚数学知识的读者理解统计套利的原则,并提出一个概念性的起点框架。文章包含一个可运行的智能交易系统(EA)、一些关于其一年回测的笔记,以及用于复现实验的相应回测配置设置(.ini 文件)。
价格行为分析工具包开发(第19部分):ZigZag分析器
每一位价格行为交易者都会手动使用趋势线来确认趋势,并找出潜在的转折或延续水平。在这个关于开发价格行为分析工具包的系列中,我们介绍一款专注于绘制倾斜趋势线的工具,以便于进行市场分析。该工具通过清晰地勾勒出有效价格行为评估所必需的关键趋势和水平,简化了交易者的流程。
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)
了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!
智能系统健壮性测试
在策略开发中,有许多错综复杂的细节需要考虑,对于初学交易者其中许多都未予重视。如是结果,众多交易者,包括我自己,都不得不历经苦难来学习这些教训。本文基于我观察到的大多数初学交易者在 MQL5 上开发策略时常见的陷阱。它将提供一系列提示、技巧、和示例,帮助辨别不合格的 EA,并以一种易于实现的方式来测试我们自己 EA 的稳健性。目标是教导读者,帮助他们未来购买 EA 时避免遭遇骗局,以及预防他们自己开发策略时的错误。
精通日志记录(第六部分):数据库日志存储方案
本文探讨如何利用数据库以结构化、可扩展的方式存储日志。内容涵盖基础概念、核心操作、MQL5中数据库处理器的配置与实现。最后验证结果,并阐述该方法在优化与高效监控方面的优势。
您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数
市场促进指数是比尔·威廉姆斯(Bill Williams)的另一个指标,旨在衡量价格走势与成交量联动的效率。一如既往,我们将在由向导汇编信号类的范畴内分析该指标的各种形态,并为各种形态呈现多种测试报告和分析。
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类
本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
风险管理(第一部分):建立风险管理类的基础知识
在本文中,我们将介绍交易风险管理的基础知识,并学习如何创建第一个函数来计算交易的适当手数以及止损。此外,我们将详细介绍这些功能的工作原理,解释每个步骤。我们的目标是清楚地了解如何在自动交易中应用这些概念。最后,我们将通过创建一个包含文件的简单脚本来将所有内容付诸实践。
MQL5中的高级内存管理与优化技术
探索在MQL5交易系统中优化内存使用的实用技巧。学习构建高效、稳定且运行速度快的智能交易系统(EA)和指标。我们将深入探究MQL5中内存的实际运作方式、致使系统运行变慢或出现故障的常见陷阱,以及——最为关键的是——如何解决这些问题。
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法
在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
从基础到中级:模板和类型名称(二)
本文解释了如何处理您可能遇到的最困难的编程情况之一:在同一个函数或过程模板中使用不同的类型。尽管我们大部分时间只关注函数,但这里介绍的所有内容都是有用的,并且可以应用于过程。
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易
当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。
日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略
拉里·康纳斯(Larry Connors)是知名交易员与量化交易领域权威作家,其最著名的成果之一是2周期相对强弱指数(RSI2)策略。该指标通过捕捉短期超买超卖信号,辅助判断市场反转时机。在本文中,我们将首先阐述研究契机,随后在MQL5中复现康纳斯的三大经典策略,并应用于标普500指数差价合约(CFD)的日内交易场景。
在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)
本文探讨了如何优化 RSI 的水平和周期,以获得更好的交易信号。我们介绍了估算最优 RSI 值的方法,并使用网格搜索和统计模型来自动选择周期。最后,我们在 MQL5 中实现了该解决方案,同时利用 Python 进行分析。我们的方法力求务实和直接,旨在以简单的方式帮助您解决潜在复杂的问题。
MQL5 交易工具包(第 6 部分):使用最新成交的挂单函数扩展历史管理 EX5 库
了解如何创建可导出函数的 EX5 模块,无缝查询和保存最近填写的挂单数据。在本全面的分步指南中,我们将通过开发专用和分隔的函数来检索最后填写的挂单的基本属性,从而增强历史管理 EX5 库。这些属性包括订单类型、设置时间、执行时间、填充类型以及有效管理和分析挂单交易历史所需的其他关键细节。
财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种
在本文中,我们将利用生成式对抗网络(GAN)创建一个合成品种,涉及生成逼真的财经数据,即模仿真实市场金融产品(例如 EURUSD)的行为。GAN 模型从历史市场数据中学习形态和波动性,并创建拥有相似特征的合成价格数据。
MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略
在本文中,我们将构建一个MQL5交易系统,可针对“聪明资金”(Smart Money)交易自动检测订单块。我们将阐述该策略的规则,在MQL5中实现其逻辑,并融入风险管理以实现有效的交易执行。最后,我们将对该系统进行回测,以评估其表现,并对其进行优化以获得最优结果。
开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码
为了取得进一步的进展,最好看看我们是否可以通过定期重新运行自动优化并生成新的 EA 来改进结果。关于使用参数优化的许多争论中的绊脚石是,在将盈利能力和回撤保持在指定水平的同时,所获得的参数在未来一段时间内可用于交易的时间有多长。有可能做到这一点吗?
时间演化旅行算法(TETA)
这是我自己的算法。本文表阐述受平行宇宙和时间流概念启发的时间演化旅行算法(TETA)。该算法的基本思路是,尽管传统意义上的时间旅行是不可能的,但我们能够选择一系列事件来导致不同的现实。
价格行为分析工具包开发(第十八部分):四分位理论(3)——四分位看板
本文中,我们在原有四分位脚本的基础上新增 "四分位看板"(Quarters Board) 工具,该工具让您无需返回代码即可直接在图表上切换四分位水平。您可以轻松启用或禁用特定水平,EA还会提供趋势方向注释,帮助您更好地理解市场走势。
MQL5自动化交易策略(第十一部分):开发多层级网格交易系统
在本文中,我们将使用MQL5开发一款多层级网格交易系统EA,重点探讨网格交易策略背后的架构与算法设计。我们将研究多层网格逻辑的实现方式以及应对不同市场状况的风险管理技术。最后,我们将提供详尽的解释和实用技巧,指导您完成自动化交易系统的构建、测试与优化。
市场模拟(第三部分):性能问题
我们经常需要后退一步,然后继续前进。在本文中,我们将展示所有必要的更改,以确保鼠标和 Chart Trade 指标不会中断。作为奖励,我们还将介绍未来将广泛使用的其他头文件中发生的其他更改。
价格行为分析工具包开发(第 17 部分):TrendLoom EA 工具
作为一名价格行为的观察者和交易者,我注意到当一个趋势得到多个时间周期的确认时,它通常会朝着该方向延续。可能不同的是趋势持续的时间,而这取决于您是哪种类型的交易者,无论是长期持仓还是从事剥头皮交易。您为确认所选的时间周期起着至关重要的作用。读这篇文章,了解一个快速、自动化的系统,只需点击一下按钮或通过定期更新,就能帮助您分析不同时间周期的整体趋势。
价格行为分析工具包开发(第十六部分):引入四分之一理论(2)—— 侵入探测器智能交易系统(EA)
在前一篇文章中,我们介绍了一个名为“四分位绘图脚本”的简单脚本。现在,我们在此基础上更进一步,创建一个用于监控的智能交易系统(EA),以跟踪这些四分位水平,并对这些价位可能引发的市场反应进行监督。请随我们一同探索在本篇文章中开发区域检测工具的过程。
卡尔曼滤波器在外汇均值回归策略中的应用
卡尔曼滤波器是一种递归算法,在算法交易中用于通过滤除价格走势中的噪声来估计金融时间序列的真实状态。它能够根据新的市场数据动态更新预测,这使得它在均值回归等自适应策略中极具价值。本文首先介绍卡尔曼滤波器,涵盖其计算方法和实现方式。接下来,我们以外汇领域一个经典的均值回归策略为例,应用该滤波器。最后,我们通过将卡尔曼滤波器与移动平均线(MA)在外汇不同货币对上进行比较,开展各种统计分析。
市场模拟(第二部分):跨期订单(二)
与上一篇文章中所做的不同,这里我们将使用 EA 交易来测试选择选项。虽然这还不是最终的解决方案,但目前已经足够了。在本文的帮助下,您将能够理解如何实现一种可能的解决方案。
利用 Python 实现价格走势离散方法
我们将考察使用 Python + MQL5 来离散价格的方法。在本文中,我将分享我开发 Python 函数库的实践经验,其以多种方式实现柱线形成 — 从经典的交易量和范围柱线,到更奇特的方法,如 Renko 和 Kagi。我们将研究三线突破蜡烛和范围柱线,分析它们的统计数据,并尝试定义如何将价格以离散化表示。
使用Python和MQL5进行多品种分析(第三部分):三角汇率
交易者常常因虚假信号而面临资金回撤,而等待确认信号又可能导致错失交易机会。本文介绍了一种三角交易策略,该策略利用白银兑美元(XAGUSD)和白银兑欧元(XAGEUR)的价格,以及欧元兑美元(EURUSD)的汇率,来过滤市场噪音。通过利用跨市场关系,交易者可以揭示隐藏的市场情绪,并实时优化交易入场点。
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略
在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
MQL5 交易工具包(第 5 部分):使用仓位函数扩展历史管理 EX5 库
了解如何创建可导出的 EX5 函数,以高效查询和保存历史仓位数据。在本分步指南中,我们将通过开发检索最近平仓的关键属性的模块来扩展历史管理 EX5 库。这些属性包括净利润、交易持续时间、基于点的止损、止盈、利润值以及其他各种重要细节。
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)
在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本
支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
使用MQL5经济日历进行交易(第六部分):利用新闻事件分析和倒计时器实现交易入场自动化
在本文中,我们将借助MQL5经济日历实现交易入场自动化,具体方法是应用用户自定义的筛选条件和时差偏移量来识别符合条件的新闻事件。我们通过对比预测值和前值,来确定是开立买入(BUY)单还是卖出(SELL)订单。动态倒计时器会显示距离新闻发布剩余的时间,并且在完成一笔交易后自动重置。
市场模拟(第一部分):跨期订单(一)
今天我们将开始第二阶段,研究市场回放/模拟系统。首先,我们将展示跨期订单的可能解决方案。我会向你展示解决方案,但它还不是最终的。这将是我们在不久的将来需要解决的一个问题的可能解决方案。
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)
在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
在 MQL5 中构建自优化智能交易系统(第六部分):防止爆仓
在今天的讨论中,我们将一同寻找一种算法程序,以最大限度地减少我们因盈利交易被止损而平仓的总次数。我们面临的问题极具挑战性,社区讨论中给出的大多数解决方案都缺乏既定且固定的规则。我们解决问题的算法方法提高了我们交易的盈利能力,并降低了我们的平均每笔交易亏损。然而,要完全过滤掉所有将被止损的交易,还需要进一步的改进,但我们的解决方案对任何人来说都是一个很好的初步尝试