Статьи по автоматизации торговых систем на языке MQL5

icon

Прочитайте статьи по торговым системам, которые основаны на самых разнообразных идеях. Вы узнаете как использовать  статистические методы и паттерны на японских свечах, как фильтровать сигналы и для чего нужны семафорные индикаторы.

С помощью Мастера MQL5 вы научитесь создавать робота без программирования для быстрой проверки торговых идей, а также узнаете, что такое генетические алгоритмы.

Новая статья
последние | лучшие
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 37): Регрессия гауссовских процессов с линейными ядрами и ядрами Матерна

Возможности Мастера MQL5, которые вам нужно знать (Часть 37): Регрессия гауссовских процессов с линейными ядрами и ядрами Матерна

Линейные ядра — простейшая матрица, используемая в машинном обучении для линейной регрессии и опорных векторных машин. Ядро Матерна (Matérn) представляет собой более универсальную версию радиальной базисной функции (Radial Basis Function, RBF), которую мы рассматривали в одной из предыдущих статей, и оно отлично подходит для отображения функций, которые не настолько гладкие, как предполагает RBF. Создадим специальный класс сигналов, который использует оба ядра для прогнозирования условий на покупку и продажу.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Пакетная нормализация — это предварительная обработка данных перед их передачей в алгоритм машинного обучения, например, в нейронную сеть. При этом всегда следует учитывать тип активации, который будет использоваться алгоритмом. Мы рассмотрим различные подходы, которые можно использовать для извлечения выгоды с помощью советника, собранного в Мастере.
preview
Упрощаем торговлю на новостях (Часть 6): Совершаем сделки (III)

Упрощаем торговлю на новостях (Часть 6): Совершаем сделки (III)

В этой статье будет реализована сортировка новостей для отдельных новостных событий на основе их идентификаторов. Кроме того, предыдущие запросы SQL будут улучшены для предоставления дополнительной информации или сокращения времени выполнения запроса. Код, созданный в предыдущих статьях, станет работоспособным.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети уже меняют подход к анализу рынков, а новые архитектуры открывают ещё больше возможностей. В статье мы завершаем работу с фреймворком SpikingBrain, который отрывает перед нами новые перспективы.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Регуляризация — это форма штрафования функции потерь пропорционально дискретному весу, применяемому ко всем слоям нейронной сети. Мы оценим значимость некоторых форм регуляризации, протестировав советник, собранный в Мастере.
preview
Разработка инструментария для анализа движения цен (Часть 9): Внешние библиотеки

Разработка инструментария для анализа движения цен (Часть 9): Внешние библиотеки

В статье рассматривается новое измерение анализа с использованием внешних библиотек, специально разработанных для расширенной аналитики. Эти библиотеки, такие как pandas, предоставляют мощные инструменты для обработки и интерпретации сложных данных, позволяя трейдерам получать более глубокое представление о динамике рынка. Интегрируя такие технологии, мы можем сократить разрыв между необработанными данными и практическими стратегиями. Здесь мы заложим основу для этого инновационного подхода и раскроем потенциал объединения технологий с опытом трейдинга.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Soft Actor Critic (мягкий актер-критик) — это алгоритм обучения с подкреплением, использующий три нейронные сети — сеть актеров и две сети критиков. Такие модели машинного обучения объединены в партнерство "главный-подчиненный", где критики моделируются для повышения точности прогнозов сети актеров. Как обычно, рассмотрим, как эти идеи можно протестировать в качестве пользовательского сигнала советника, собранного с помощью Мастера.
preview
Управление рисками (Часть 3): Создание основного класса для управления рисками

Управление рисками (Часть 3): Создание основного класса для управления рисками

В этой статье мы начнем создание основного класса управления рисками, который будет ключевым для контроля рисков в системе. Мы сосредоточимся на построении основ, определении основных структур, переменных и функций. Кроме того, мы внедрим необходимые методы для присвоения значений максимальной прибыли и убытков, тем самым заложив основу для управления рисками.
preview
Знакомство с MQL5 (Часть 19): Автоматизация обнаружения волн Вульфа

Знакомство с MQL5 (Часть 19): Автоматизация обнаружения волн Вульфа

Эта статья описывает, как программно выявлять бычьи и медвежьи паттерны волн Вульфа и торговать на их основе с помощью языка MQL5. Мы рассмотрим, как выявлять структуры волн Вульфа программным образом и исполнять сделки на их основе с помощью языка MQL5. Это включает в себя обнаружение ключевых точек свинга, проверку правил паттерна и подготовку советника к действию на основе найденных сигналов.
preview
Алгоритм хаотической оптимизации  — Chaos optimization algorithm (COA)

Алгоритм хаотической оптимизации — Chaos optimization algorithm (COA)

Усовершенствованный алгоритм хаотической оптимизации (COA), объединяющий воздействие хаоса с адаптивными механизмами поиска. Алгоритм использует множество хаотических отображений и инерционные компоненты для исследования пространства поиска. Статья раскрывает теоретические основы хаотических методов финансовой оптимизации.
preview
Знакомство с языком MQL5 (Часть 14): Руководство для начинающих по созданию пользовательских индикаторов (III)

Знакомство с языком MQL5 (Часть 14): Руководство для начинающих по созданию пользовательских индикаторов (III)

Научитесь создавать индикатор Harmonic Pattern на языке MQL5 с использованием графических объектов. Узнайте, как обнаруживать точки свинга, применять уровни Фибоначчи и автоматизировать распознавание паттернов.
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Разреженная смесь экспертов)

Предлагаем познакомиться с практической реализацией блока разреженной смеси экспертов для временных рядов в вычислительной среде OpenCL. В статье шаг за шагом разбирается работа маскированной многооконной свёртки, а также организация градиентного обучения в условиях множественных информационных потоков.
preview
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (EV-MGRFlowNet)

Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (EV-MGRFlowNet)

В статье рассматривается перенос архитектуры EV-MGRFlowNet, изначально разработанной для обработки событийных видеоданных, в область финансовых временных рядов. Представленный подход раскрывает новый взгляд на рынок как на поток микродвижений, где цена, объём и ликвидность образуют динамическую структуру, поддающуюся рекуррентному анализу без явного надзора.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Предлагаем познакомиться с новой реализацией ключевых компонентов Фреймворка GinAR — адаптивного алгоритма для работы с графовыми временными рядами. В статье шаг за шагом разобраны архитектура, алгоритмы прямого прохода и обратного распространения ошибки.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Окончание)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Окончание)

Фреймворк BAT превращает хаотичный поток рыночных данных в точные прогнозы и взвешенные торговые решения. Тесты на исторических данных показывают стабильный рост капитала при контролируемых рисках. Архитектура модели проста, масштабируема и готова к дальнейшей оптимизации.
preview
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Энкодер)

Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Энкодер)

В статье представлена адаптация фреймворка SDformerFlow, обеспечивающая высокую адаптивность за счёт интеграции спайкового внимания с многооконной свёрткой и взвешенным суммированием элементов Query. Архитектура позволяет каждой голове внимания обучать собственные параметры, что повышает точность и чувствительность модели к структуре анализируемых данных.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Темп обучения — это размер шага к цели обучения во многих алгоритмах машинного обучения. В статье мы изучим, какое влияние многочисленные форматы могут оказать на производительность генеративно-состязательной сети (Generative Adversarial Network, GAN) — разновидности нейронной сети, которую мы рассмотрели в одной из предыдущих статей.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Возможности Мастера MQL5, которые вам нужно знать (Часть 45): Обучение с подкреплением с помощью метода Монте-Карло

Монте-Карло — четвертый алгоритм обучения с подкреплением, который мы рассматриваем в контексте его реализации в советниках, собранных с помощью Мастера. Хотя алгоритм основан на случайной выборке, он предоставляет обширные возможности моделирования.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Возможности Мастера MQL5, которые вам нужно знать (Часть 47): Обучение с подкреплением (алгоритм временных различий)

Temporal Difference (TD, временные различия) — еще один алгоритм обучения с подкреплением, который обновляет Q-значения на основе разницы между прогнозируемыми и фактическими вознаграждениями во время обучения агента. Особое внимание уделяется обновлению Q-значений без учета их пар "состояние-действие" (state-action). Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Фреймворк Extralonger демонстрирует подход к интеграции пространственных и временных факторов в единую модель, что позволяет одновременно учитывать локальные закономерности и долгосрочные циклы. Такая архитектура делает прогнозирование временных рядов более устойчивым к рыночному шуму и открывает возможность анализа данных на разных горизонтах. В статье подробно рассматривается, как эти идеи воплощаются на практике средствами OpenCL и MQL5.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

В данной статье показана практическая реализация фреймворка SEW ResNet средствами MQL5 с акцентом на прикладное применение в торговле. Двойной Bottleneck даёт возможность одновременно анализировать унитарные потоки и межканальные зависимости, не теряя градиентов при обучении. Спайковые активации с адаптивными порогами и гейты повышают устойчивость к шуму и чувствительность к новизне рынка. В тексте приведены детали реализации и результаты тестов.
preview
Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Разработка системы репликации (Часть 46): Проект Chart Trade (V)

Устали тратить время на поиск того самого файла, который необходим для работы вашего приложения? Как насчет того, чтобы включить все в исполняемый файл? Так вы больше не будете тратить время на поиск необходимого. Знаю, что многие пользуются именно такой формой распространения и хранения вещей, но есть гораздо более подходящий способ. По крайней мере, что касается распространения исполняемых файлов и их хранения. Метод, который будет здесь представлен, может оказаться очень полезным, так как в качестве отличного помощника вы сможете использовать сам MetaTrader 5, а также MQL5. И это не так уж трудно и сложно для понимания.
preview
Разработка системы репликации (Часть 54): Появление первого модуля

Разработка системы репликации (Часть 54): Появление первого модуля

В этой статье мы рассмотрим, как собрать первый из действительно функциональных модулей для использования в системе репликации/моделирования, который также будет иметь общее назначение, чтобы служить и другим целям. Мы говорим о модуле индикатора мыши.
preview
Разработка инструментария для анализа движения цен (Часть 10): Внешние библиотеки (II) VWAP

Разработка инструментария для анализа движения цен (Часть 10): Внешние библиотеки (II) VWAP

Освойте возможности VWAP с помощью нашего подробного руководства! Узнайте, как интегрировать анализ VWAP в вашу торговую стратегию, используя MQL5 и Python. Получите максимально полное представление о рынке и улучшите свои торговые решения уже сегодня.
preview
Знакомство с языком MQL5 (Часть 15): Руководство для начинающих по созданию пользовательских индикаторов (IV)

Знакомство с языком MQL5 (Часть 15): Руководство для начинающих по созданию пользовательских индикаторов (IV)

В этой статье вы узнаете, как создать индикатор ценового действия на языке MQL5, сосредоточив внимание на ключевых точках, таких как минимум (L), максимум (H), более высокий минимум (HL), более высокий максимум (HH), более низкий минимум (LL) и более низкий максимум (LH) для анализа трендов. Вы также изучите, как выявлять зоны премии и дисконта, отмечать уровень коррекции 50% и использовать соотношение риска и вознаграждения для расчета целевых уровней прибыли. В статье также рассмотрено определение точек входа, уровней стоп-лосса (SL) и тейк-профита (TP) на основе структуры тренда.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики

Проксимальная оптимизация политики (Proximal Policy Optimization) — еще один алгоритм обучения с подкреплением, который обновляет политику, часто в сетевой форме, очень маленькими шагами, чтобы обеспечить стабильность модели. Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
preview
Разработка динамического советника на нескольких парах (Часть 3): Стратегии возврата к среднему и моментума

Разработка динамического советника на нескольких парах (Часть 3): Стратегии возврата к среднему и моментума

В этой статье мы рассмотрим третью часть нашего пути в формулировании динамического мультипарного советника (Dynamic Multi-Pair Expert Advisor), сосредоточив внимание на интеграции стратегий торговли на основе возврата к среднему и моментума. Мы разберем, как обнаруживать и действовать при отклонениях цен от среднего (Z-оценка), а также как измерять моментум по нескольким валютным парам, чтобы определить направление торговли.
preview
Разработка системы репликации (Часть 53): Всё усложняется (V)

Разработка системы репликации (Часть 53): Всё усложняется (V)

В этой статье мы рассмотрим важную тему, которую мало кто понимает: Пользовательские события. Опасности. Преимущества и ошибки, вызванные такими элементами. Данная тема является ключевой для тех, кто хочет стать профессиональным программистом на MQL5 или любом другом языке. Поэтому мы сосредоточимся на MQL5 и MetaTrader 5.
preview
Разработка инструментария для анализа движения цен (Часть 2): Скрипт аналитических комментариев

Разработка инструментария для анализа движения цен (Часть 2): Скрипт аналитических комментариев

В продолжение нашей работы по упрощению взаимодействия с поведением цены мы рады представить еще один инструмент, который может значительно улучшить ваш анализ рынка и помочь вам принимать обоснованные решения. Этот инструмент отображает ключевые технические индикаторы, такие как цены предыдущего дня, значимые уровни поддержки и сопротивления, а также торговый объем, автоматически генерируя визуальные подсказки на графике.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Фреймворк Extralonger демонстрирует уникальную способность интегрировать пространственные и временные факторы в единую модель, обеспечивая высокую точность прогнозов. Его архитектура позволяет адаптироваться к разным горизонтам планирования и финансовым инструментам, сохраняя прозрачность и управляемость системы.
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Приглашаем к знакомству с фреймворком S3CE-Net и его механизмами SSAM и STFS, которые точно обрабатывают спайковые события с учётом каузальности. Модель лёгкая, параллельная и умеет выявлять сложные связи во времени и пространстве.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (IX) — Управление несколькими символами на одном графике для торговли на новостях

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (IX) — Управление несколькими символами на одном графике для торговли на новостях

Торговля на новостях часто требует управления несколькими позициями и символами в течение очень короткого времени из-за повышенной волатильности. В сегодняшнем обсуждении мы рассмотрим проблемы торговли несколькими символами, интегрировав эту функцию в наш советник «Заголовки новостей». Присоединяйтесь к нам, и мы узнаем, как алгоритмическая торговля с помощью MQL5 делает торговлю несколькими символами более эффективной и действенной.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 53): Market Facilitation Index

Возможности Мастера MQL5, которые вам нужно знать (Часть 53): Market Facilitation Index

Market Facilitation Index (индекс облегчения рынка) — еще один индикатор Билла Вильямса, предназначенный для измерения эффективности движения цен в сочетании с объемом. Как всегда, мы рассматриваем различные паттерны этого индикатора в рамках класса сигналов Мастера и представляем ряд отчетов по тестам и результаты анализа различных паттернов.
preview
Моделирование рынка (Часть 01): Кросс-ордера (I)

Моделирование рынка (Часть 01): Кросс-ордера (I)

Сегодня мы начнем второй этап, на котором рассмотрим вопрос о системе репликации/моделирования рынка. Для начала мы покажем возможное решение для кросс-ордеров. Я покажу решение, но оно еще не окончательное, это будет вариант решения проблемы, решить которую предстоит в ближайшем будущем.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Мы завершаем рассмотрение чувствительности темпа обучения к производительности советников изучением адаптируемых темпов обучения. Темпы должны быть настроены для каждого параметра в слое в процессе обучения, поэтому нам необходимо оценить потенциальные преимущества по сравнению с ожидаемыми потерями производительности.
preview
Автоматизация торговых стратегий на MQL5 (Часть 7): Создание советника по сеточной торговле с динамическим масштабированием лотов

Автоматизация торговых стратегий на MQL5 (Часть 7): Создание советника по сеточной торговле с динамическим масштабированием лотов

В настоящей статье мы создадим советник сеточной торговли на MQL5, использующий динамическое масштабирование лотов. Мы расскажем о разработке стратегии, реализации кода и процессе тестирования на истории. Наконец, мы поделимся ключевыми идеями и передовыми практиками по оптимизации автоматической торговой системы.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

В этой статье продолжаем практическое знакомство с SSCNN — архитектурным решением нового поколения, способным работать с фрагментированными временными рядами. Вместо слепого масштабирования — разумная модульность, внимание к деталям и точечная нормализация. Мы шаг за шагом создаём вычислительные блоки в среде MQL5 и закладываем основу для надёжного прогнозного анализа.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Продолжаем работу по реализации подходов, предложенных авторами фреймворка Extralonger. На этот раз сосредоточимся на построении модуля Global-Local Spatial Attention средствами MQL5, рассматривая как его структуру, так и практическую интеграцию в общий вычислительный процесс.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (E-STMFlow)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (E-STMFlow)

Предлагаем познакомиться с фреймворком E-STMFlow, который эффективно обрабатывает потоки событий, извлекая информативные эмбеддинги, фильтруя шум и выявляя ключевые движения. Его архитектура позволяет выявлять сложные взаимосвязи между признаками и обеспечивает масштабируемость, точность и высокую вычислительную эффективность для интеллектуального анализа и прогнозирования.