Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money
Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.
Показатель склонности (Propensity score) в причинно-следственном выводе
В статье рассматривается тема матчинга в причинно-следственном выводе. Матчинг используется для сопоставления похожих наблюдений в наборе данных. Это необходимо для правильного определения каузальных эффектов, избавления от предвзятости. Автор рассказывает, как это помогает в построении торговых систем на машинном обучении, которые становятся более устойчивыми на новых данных, на которых не обучались. Центральная роль отводится показателю склонности, который широко используется в причинно-следственном выводе.
Работа с таймсериями в библиотеке DoEasy (Часть 42): Класс объекта абстрактного индикаторного буфера
С данной статьи начнём делать классы индикаторных буферов для библиотеки DoEasy. Сегодня создадим базовый класс абстрактного буфера, который будет являться основой для создания различных типов классов индикаторных буферов.
Нейросети — это просто (Часть 28): Policy gradient алгоритм
Продолжаем изучение методов обучение с подкреплением. В предыдущей статье мы познакомились с методом глубокого Q-обучения. В котором мы обучаем модель прогнозирования предстоящей награды в зависимости от совершаемого действия в конкретной ситуации. И далее совершаем действие в соответствии с нашей политикой и ожидаемой наградой. Но не всегда возможно аппроксимировать Q-функцию. Или её аппроксимация не даёт желаемого результата. В таких случаях используют методы аппроксимации не функции полезности, а на прямую политику (стратегию) действий. Именно к таким методам относится policy gradient.
Машинное обучение и Data Science (Часть 03): Матричная регрессия
В этот раз мы будем создавать модели с помощью матриц — они дают большую гибкость и позволяют создавать мощные модели, которые могут обрабатывать не только пять независимых переменных, но и множество других, насколько позволяют пределы вычислительных возможностей компьютера. Статья будет очень интересной, это точно.
Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)
В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.
Алгоритм докупки: математическая модель увеличения эффективности
В данной статье мы будем использовать алгоритм докупки, как путеводитель в мир более глубокого понимания эффективности торговых систем и начнем работать над общими принципами усиления эффективности торговли с помощью математики и логики а также применим самые нестандартные методы увеличения эффективности в контексте использования абсолютно любой торговой системы.
Работа с таймсериями в библиотеке DoEasy (Часть 47): Мультипериодные мультисимвольные стандартные индикаторы
В статье начнём разработку методов работы со стандартными индикаторами, что в итоге позволит создавать мультисимвольные мультипериодные стандартные индикаторы на базе классов библиотеки. Также добавим в классы таймсерий событие "Пропущенные бары" и разгрузим код основной программы, переместив из неё функции подготовки библиотеки в класс CEngine.
Разработка торгового робота на Python (Часть 3): Реализация торгового алгоритма на основе модели
Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу создания торгового алгоритма на Python.
Разработка социального технологического стартапа, часть I: Публикуем сигналы MetaTrader 5 в Твиттере
Сегодня мы поговорим о том, как привязать терминал MetaTrader 5 к аккаунту в Твиттере для того, чтобы публиковать сигналы вашего эксперта. Мы разрабатываем Social Decision Support System (Социальную систему поддержки принятия решений), далее SDSS, в PHP на основе веб-сервиса RESTful. В основе этой идеи лежит концепция автоматической торговли или, так называемая торговля при помощи компьютеров. Мы хотим, чтобы автоматические торговые сигналы эксперта проходили через фильтры когнитивных способностей разума человека.
Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен
В статье создадим два класса - класс объекта-снимка стакана цен и класс объекта-серии снимков стакана цен и протестируем создание серии данных стакана цен.
Разработка торговой системы на основе осциллятора Чайкина
Это новая статья из серии, в которой мы изучаем популярные технические индикаторы и учимся создавать на их основе торговые системы. В этой статье будем работать с индикатором Chaikin Oscillator — Осциллятор Чайкина.
Работа с таймсериями в библиотеке DoEasy (Часть 40): Индикаторы на основе библиотеки - реалтайм обновление данных
В статье рассмотрим создание простого мультипериодного индикатора на основе библиотеки DoEasy. Доработаем классы таймсерий для получения данных с любых таймфреймов для отображения их на текущем периоде графика.
Статистический арбитраж с прогнозами
Мы рассмотрим статистический арбитраж, выполним поиск символов корреляции и коинтеграции с помощью Python, создадим индикатор для коэффициента Пирсона, а также советник для торговли статистическим арбитражем с прогнозами, сделанными с помощью Python и моделей ONNX.
Нейросети — это просто (Часть 18): Ассоциативные правила
В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.
Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)
Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.
Нейросети — это просто (Часть 17): Понижение размерности
Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.
Опыт разработки торговой стратегии
В этой статье мы сделаем попытку разработать собственную торговую стратегию. Любая торговая стратегия должна быть построена на основе какого-то статистического преимущества. Причем это преимущество должно существовать в течение долгого времени.
Фильтр на основании истории торговли
В статье рассматривается использование виртуальной торговли, как составной части фильтра открытия сделок.
Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис
Деревья решений классифицируют данные, имитируя то, каким образом размышляют люди. В этой статье посмотрим, как строить деревья и использовать их для классификации и прогнозирования данных. Основная цель алгоритма деревьев решений состоит в том, чтобы разделить выборку на данные с "примесями" и на "чистые" или близкие к узлам.
Нелинейные регрессионные модели на бирже
Нелинейные регрессионные модели на бирже: реально ли прогнозировать финансовые рынки? Попробуем создать моделеь для прогноза цен на евро-доллар, и сделать на ее основе двух роботов - на Python и MQL5.
Разработка торговой системы на основе Awesome Oscillator
Это очередная статья из серии, и в ней мы познакомимся с еще одним полезным техническим инструментом для торговли — индикатором Awesome Oscillator (AO). Узнаем, как разрабатывать торговые системы на основе показателей от этого индикатора.
Работа с таймсериями в библиотеке DoEasy (Часть 38): Коллекция таймсерий - реалтайм обновление и доступ к данным из программы
В статье рассмотрим реалтайм-обновление данных таймсерий и отправку сообщений о событии "Новый бар" на график управляющей программы от всех таймсерий всех символов для возможности обработки этих событий в своих программах. Для определения необходимости обновления таймсерий для нетекущих символа и периодов графика будем использовать класс "Новый тик".
Разработка торговой системы на основе Accelerator Oscillator
Новая статья из серии, в которой мы учимся создавать торговые системы по показателям самых популярных технических индикаторов. На этот раз будем изучать индикатор Accelerator Oscillator — узнаем, как его использовать и как создавать торговые системы на его основе.
Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции
В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.
Управление рисками и капиталом с помощью советников
Эта статья о том, чего вы не найдете в отчете о тестировании, чего следует ожидать при использовании советников, как управлять своими деньгами при использовании роботов и как покрыть значительный убыток, чтобы остаться в трейдинге при автоматизированной торговле.
Как стать участником Automated Trading Championship 2008?
Основная цель проведения Чемпионата - популяризация автоматического трейдинга и накопление практической информации в этой области. Как Организатор Чемпионата, мы стремимся обеспечивать честное соревнование и пресекать все попытки мошенничества. Именно этими соображениями продиктованы жесткие Правила Чемпионата.
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.
Магия временных торговых интервалов с инструментом Frames Analyzer
Что такое Frames Analyzer? Это подключаемый модуль к любому торговому эксперту для анализа фреймов оптимизации во время оптимизации параметров в тестере стратегий, а также вне тестера посредством чтения MQD-файла или базы данных, которая создаётся сразу после оптимизации параметров. Вы сможете делиться этими результатами оптимизации с другими пользователями, у которых есть инструмент Frames Analyzer, чтобы обсудить полученные результаты оптимизации вместе.
Разработка торговой системы на основе Индекса облегчения рынка MFI от Билла Вильямса
Это новая статья из серии, в которой мы учимся создавать торговые системы на основе популярных технических индикаторов. В этой новой статье мы рассмотрим Индекс облегчения рынка (Market Facilitation Index, MFI), разработанный Биллом Вильямсом.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть IX): Совместимость с MQL4 - Подготовка данных
В предыдущих статьях мы начали создавать большую кроссплатформенную библиотеку, целью которой является упростить написание программ для платформ MetaTrader 5 и MetaTrader 4. В восьмой части сделали класс для отслеживания событий модификации рыночных ордеров и позиций. В данной статье начнём доработку библиотеки с целью полной её совместимости с MQL4.
Нейросети — это просто (Часть 30): Генетические алгоритмы
Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.
Торговая техника RSI Deep Three Move
В статье представлена техника торговли RSI Deep Three Move в MetaTrader 5. Статья основана на новой серии исследований, демонстрирующих несколько торговых методов, основанных на RSI - техническом индикаторе для измерения силы и импульса ценных бумаг, включая акции, валюты и товары.
Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5
Создаем легальную в глазах брокеров арбитражную систему, которая создает тысячи синтетических цен на рынке Форекс, анализирует их, и успешно торгует в прибыль.
Как обнаруживать тренды и графические паттерны с помощью MQL5
В статье представлен метод автоматического обнаружения моделей ценовых действий с помощью MQL5, таких как тренды (восходящий, нисходящий, боковой) и графические модели (двойная вершина, двойное дно).
Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге
Торговлю по вероятностям можно сравнить с ходьбой по канату — она требует точности, баланса и четкого понимания риска. В мире трейдинга вероятность решает все. Именно от нее зависит результат — успех или неудача, прибыль или убыток. Используя возможности вероятности, трейдеры могут принимать более обоснованные решения, эффективнее управлять рисками и достигать своих финансовых целей. Неважно, опытный вы инвестор или начинающий трейдер, понимание вероятности может стать ключом к раскрытию вашего торгового потенциала. В этой статье мы познакомимся с увлекательным миром вероятностного трейдинга и покажем, как вывести игру в торговлю на новый уровень.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть X): Совместимость с MQL4 - События открытия позиции и активации отложенных ордеров
В предыдущих статьях мы начали создавать большую кроссплатформенную библиотеку, целью которой является упростить написание программ для платформ MetaTrader 5 и MetaTrader 4. В девятой части начали дорабатывать классы библиотеки для работы в MQL4. В данной статье продолжим доработку библиотеки с целью полной её совместимости с MQL4.
Как мы развивали сервис торговых сигналов MetaTrader и социальный трейдинг в целом
Мы активно совершенствуем сервис Сигналы, последовательно избавляемся от прежних недоработок и вносим изменения в существующие механизмы. MetaTrader Signals двухлетней давности и MetaTrader Signals на текущий момент - это словно два различных сервиса.
Как сократить код торгового эксперта, попутно упростив себе жизнь и уменьшив число возможных ошибок
Простая концепция, изложенная в данной статье, позволит разработчикам МТС на MQL4 упростить существующие торговые системы, а также сократить время разработки новых систем за счет сокращения объема кода торговых экспертов.
Причинно-следственный вывод в задачах классификации временных рядов
В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.