
Графика в библиотеке DoEasy (Часть 98): Перемещаем опорные точки расширенных стандартных графических объектов
В статье продолжим развитие расширенных стандартных графических объектов, и создадим функционал перемещения опорных точек составных графических объектов при помощи контрольных точек управления координатами опорных точек графического объекта.

Cоздание стратегии возврата к среднему на основе машинного обучения
В данной статье предлагается очередной оригинальный подход к созданию торговых систем на основе машинного обучения, с использованием кластеризации и разметки сделок для стратегий возврата к среднему.


Графика в библиотеке DoEasy (Часть 85): Коллекция графических объектов - добавляем вновь создаваемые
В статье закончим создание классов-наследников класса абстрактного графического объекта и начнём реализацию хранения этих объектов в классе-коллекции. В частности — создадим функционал для добавления в класс-коллекцию вновь создаваемых стандартных графических объектов.

Непрерывная скользящая оптимизация (Часть 6): Логическая часть автооптимизатора и его структура
Описывая создание автоматической скользящей оптимизации, мы добрались до внутренней структуры самого автооптимизатора. Данная статья может быть полезна тем, кто пожелает сам доработать созданный проект, либо же просто желает разобраться в логики функционирования программы. В текущей статье при помощи UML диаграмм представлена внутренняя структура проекта и взаимосвязи объектов между собой. Также рассматривается процесс запуска оптимизаций, но пока без описания процесса реализации оптимизатора.

Треугольный арбитраж с прогнозами
В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?

Мультибот в MetaTrader (Часть II): улучшенный динамический шаблон
Развивая тему предыдущей статьи про мультибота, я решил создать более гибкий и функциональный шаблон, который обладает большими возможностями и может эффективно применяться как во фрилансе, так и использоваться в виде базы для разработки мультивалютных и мультипериодных советников с возможностью интеграции с внешними решениями.

Библиотека численного анализа ALGLIB в MQL5
В этой статье мы кратко рассмотрим библиотеку численного анализа ALGLIB 3.19, ее приложения и новые алгоритмы, позволяющие повысить эффективность анализа финансовых данных.

Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money
Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.

Разрабатываем мультивалютный советник (Часть 2): Переход к виртуальным позициям торговых стратегий
Продолжим разработку мультивалютного советника с несколькими параллельно работающими стратегиями. Попробуем перенести всю работу, связанную с открытием рыночных позиций с уровня стратегий на уровень эксперта, управляющего стратегиями. Сами стратегии будут торговать только виртуально, не открывая рыночных позиций.

Как построить советник, работающий автоматически (Часть 03): Новые функции
Сегодня вы научитесь создавать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье мы начали разрабатывать систему ордеров, которой будем пользоваться в автоматическом советнике. Однако мы создали только одну из необходимых функций или процедур.


Графика в библиотеке DoEasy (Часть 96): Работа с событиями мышки и графика в объектах-формах
В статье начнём разработку функционала для работы с событиями мышки в объектах-формах и добавим новые свойства и их отслеживание в объект-символ. Помимо этого сегодня доработаем класс объекта-символа, так как с момента его написания у символов графика появились новые свойства, которые желательно учитывать и отслеживать их изменение.

Как добавить Trailing Stop по индикатору Parabolic SAR
При создании торговой стратегии нам нужно проверить самые разные варианты защитных стопов. И тут напрашивается динамическое подтягивание уровня Stop Loss вслед за ценой. Наилучшим кандидатом для этого является индикатор Parabolic SAR —трудно придумать что-либо проще и нагляднее.

Нейросети — это просто (Часть 32): Распределенное Q-обучение
В одной из статей данной серии мы с вами уже познакомились с методом Q-обучения. Данный метод усредняет вознаграждения за каждое действие. В 2017 году были представлены сразу 2 работы, в которых большего успеха добиваются при изучении функции распределения вознаграждения. Давайте рассмотрим возможность использования подобной технологии для решения наших задач.


Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен
В статье сделаем реалтайм-обновление коллекции тиковых данных и подготовим класс объекта-символа для работы со стаканом цен, работу над которым начнём со следующей статьи.

Быстрый тестер торговых стратегий на Python с использованием Numba
В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.

Эксперименты с нейросетями (Часть 7): Передаем индикаторы
Примеры передачи индикаторов в перцептрон. В статье даются общие понятия, представлен простейший готовый советник, результаты его оптимизации и форвард тестирования.


Графика в библиотеке DoEasy (Часть 82): Рефакторинг объектов библиотеки и коллекция графических объектов
В статье доработаем все объекты библиотеки - присвоим каждому объекту его уникальный тип и продолжим разработку класса-коллекции графических объектов библиотеки.

Индикаторы с интерактивным управлением на графике
Новый взгляд на интерфейс индикаторов. Главное — удобство. Перепробовав за долгие годы десятки различных торговых стратегий, а также протестировав сотни различных индикаторов, я сделал для себя некоторые выводы, которыми хочу с вами поделиться в этой статье.

Алгоритмическая торговля на основе 3D-паттернов разворота
Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?

Брутфорс-подход к поиску закономерностей (Часть VI): Циклическая оптимизация
В этой статье я покажу первую часть доработок, которые позволили мне не только замкнуть всю цепочку автоматизации для торговли в MetaTrader 4 и 5, но и сделать что-то гораздо интереснее. Отныне данное решение позволяет мне полностью автоматизировать как процесс создания советников, так и процесс оптимизации, а также минимизировать трудозатраты на поиск эффективных торговых конфигураций.

Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха
В этой статье я попытаюсь использовать нашу логистическую модель, чтобы спрогнозировать крах фондового рынка на основе главнейших акций для экономики США: NETFLIX и APPLE. Мы проанализируем эти акции, будем использовать информацию о предыдущих падениях рынка 2019 и 2020 годов. Посмотрим, как наша модель будет работать в нынешних мрачных условиях.

Все, что вам нужно знать о структуре программы MQL5
Любая программа на любом языке программирования имеет определенную структуру. В этой статье вы изучите основные компоненты структуры программы на MQL5, что может быть очень полезно при создании торговой системы или торгового инструмента для MetaTrader 5.

Риск-менеджер для ручной торговли
В данной статье мы подробно раскроем написание класса риск-менеджера для ручной торговли с нуля. Также данный класс может быть использован как базовый класс для наследования трейдерам, которые торгуют алгоритмически.

Объектно-ориентированное программирование (ООП) в MQL5
Как разработчикам, нам необходимо научиться создавать и разрабатывать программное обеспечение, которое можно использовать многократно и гибко, без дублирования кода, особенно если у нас есть разные объекты с разным поведением. Это можно легко сделать, используя методы и принципы объектно-ориентированного программирования. В этой статье представлены основы объектно-ориентированного программирования в MQL5.

Квантование в машинном обучении (Часть 1): Теория, пример кода, разбор реализации в CatBoost
В настоящей статье речь пойдёт о теоретическом применении квантования при построении древовидных моделей. Рассмотрены реализованные методы квантования в CatBoost. Материал будет подан без сложных математических формул, доступным языком.

Объектно-ориентированное программирование (ООП) в MQL5
Как разработчикам, нам необходимо научиться создавать и разрабатывать программное обеспечение, которое можно использовать многократно и гибко, без дублирования кода, особенно если у нас есть разные объекты с разным поведением. Это можно легко сделать, используя методы и принципы объектно-ориентированного программирования. В этой статье представлены основы объектно-ориентированного программирования в MQL5.


Графика в библиотеке DoEasy (Часть 95): Элементы управления составными графическими объектами
В статье рассмотрим инструментарий для управления составными графическими объектами - элементы управления расширенным стандартным графическим объектом. Сегодня мы немного отступим от темы перемещения составного графического объекта и сделаем обработчик события изменения графика, на котором находится составной графический объект, и займёмся объектами управления составным графическим объектом.


Графика в библиотеке DoEasy (Часть 94): Составные графические объекты, перемещение и удаление
В статье начнём разработку различных событий составного графического объекта. Рассмотрим частично перемещение и удаление составного графического объекта. Сегодня по большей части мы будем дорабатывать то, что было создано в прошлой статье.

Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)
Мы продолжаем рассмотрение методов обучения с подкреплением. И в данной статье я предлагаю вам познакомиться с несколько иным алгоритмом, который рассматривает политику Агента в парадигме построения последовательности действий.

Разработка торговой системы на основе Индекса относительной бодрости Relative Vigor Index
Это новая статья из серии, в которой мы учимся создавать торговые системы по показателям самых популярных технических индикаторов. В этот раз познакомимся с Индексом относительной бодрости (Relative Vigor Index, RVI).

Стратегия Билла Вильямса с индикаторами и прогнозами и без них
Мы рассмотрим одну из известных стратегий Билла Вильямса и попытаемся улучшить ее с помощью индикаторов и прогнозов.

Нейросети — это просто (Часть 53): Декомпозиция вознаграждения
Мы уже не раз говорили о важности правильного подбора функции вознаграждения, которую используем для стимулирования желательного поведения Агента, добавляя вознаграждения или штрафы за отдельные действия. Но остается открытым вопрос о дешифровке наших сигналов Агентом. В данной статье мы поговорим о декомпозиции вознаграждения в части передачи отдельных сигналов обучаемому Агенту.

Нейросети — это просто (Часть 16): Практическое использование кластеризации
В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.

Риск-менеджер для алгоритмической торговли
Целями данной статьи являются: доказать обязательность применения риск-менеджера, адаптация принципов контролируемого риска при торговле алгоритмически в отдельном классе, чтобы каждый смог самостоятельно убедиться в эффективности подхода нормирования риска при внутридневной торговле и инвестировании на финансовых рынках. В данной статье мы подробно раскроем написание класса риск-менеджера для алгоритмической торговли в продолжение к предыдущей статье по написанию риск-менеджера для ручной торговли.

Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)
Алгоритм растущих деревьев (Saplings Sowing and Growing up, SSG) вдохновлен одним из самых жизнестойких организмов на планете, который является замечательным образцом выживания в самых различных условиях.

Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures
В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.

Разработка торгового советника с нуля (Часть 12): Время и торговля (I)
Сегодня мы создадим Time & Trade с быстрой интерпретацией для чтения потока ордеров. Это первая часть, в которой мы будем строить эту систему. В следующей статье мы дополним систему недостающей информацией, поскольку нам потребуется добавить в код нашего эксперта несколько новых вещей.

Работаем с датами и временем в MQL5
Трейдерам и разработчикам торговых инструментов очень важно понимать, как хорошо и эффективно обращаться с датами и временем. В статье я покажу, как мы можем обращаться с датами и временем при создании эффективных торговых инструментов.

Работа с таймсериями в библиотеке DoEasy (Часть 53): Класс абстрактного базового индикатора
В статье рассмотрим создание класса абстрактного индикатора, который далее будет использоваться как базовый класс для создания объектов стандартных и пользовательских индикаторов библиотеки.

Машинное обучение и Data Science (Часть 23): Почему LightGBM и XGBoost лучше многих ИИ-моделей?
LightGBM и XGBoost — продвинутые методы построения деревьев решений с использованием градиентного бустинга, они обеспечивают превосходную производительность и гибкость, что делает их идеальными для финансового моделирования и алгоритмической торговли. В этой статье мы поговорим о том, как использовать эти инструменты для оптимизации торговых стратегий, повышения точности прогнозов и получения выгоды на финансовых рынках.