
DoEasy. Элементы управления (Часть 20): WinForms-объект SplitContainer
Сегодня начнём разрабатывать элемент управления SplitContainer из набора элементов MS Visual Studio. Этот элемент состоит из двух панелей, разделённых вертикальным или горизонтальным перемещаемым разделителем.

Популяционные алгоритмы оптимизации: Алгоритмы эволюционных стратегий (Evolution Strategies, (μ,λ)-ES и (μ+λ)-ES)
В этой статье будет рассмотрена группа алгоритмов оптимизации, известных как "Эволюционные стратегии" (Evolution Strategies или ES). Они являются одними из самых первых популяционных алгоритмов, использующих принципы эволюции для поиска оптимальных решений. Будут представлены изменения, внесенные в классические варианты ES, а также пересмотрена тестовая функция и методика стенда для алгоритмов.

Критерий однородности Смирнова как индикатор нестационарности временного ряда
В статье рассматривается один из самых известных непараметрических критериев однородности — критерий Смирнова. Анализируются как модельные данные, так и реальные котировки. Приводится пример построения индикатора нестационарности (iSmirnovDistance).

Разработка и тестирование торговых систем Aroon
В этой статье мы узнаем, как построить торговую систему Aroon, изучив основы индикаторов и необходимые шаги для создания торговой системы на основе индикатора Aroon. После создания этой торговой системы мы проверим, может ли она быть прибыльной или требует дополнительной оптимизации.

DoEasy. Элементы управления (Часть 3): Создание привязанных элементов управления
В статье разберём создание подчинённых элементов управления, привязанных к базовому элементу, создаваемых непосредственно при помощи функционала базового элемента управления. Помимо поставленной выше задачи, немного поработаем над объектом-тенью графического элемента, так как при её использовании для любого из объектов, позволяющих иметь тень, до сих пор есть неисправленные ошибки логики

Машинное обучение и Data Science (Часть 15): SVM — полезный инструмент в арсенале трейдера
В этой статье мы разберем, какую роль метод опорных векторов (Support Vector Machines, SVM) играет в формировании будущего трейдинга. Статью можно рассматривать как подробное руководством, которое рассказывает, как с помощью SVM улучшить торговые стратегии, оптимизировать процесс принятия решений и открыть новые возможности на финансовых рынках. Вы погрузитесь в мир SVM через реальные приложения, пошаговые инструкции и экспертные оценки. Возможно, этот незаменимый инструмент поможет разобраться в сложностях современной торговли. В любом случае SVM станет очень полезным инструментом в арсенале каждого трейдера.

Скальперский советник Ilan 3.0 Ai с машинным обучением
Помните советник Ilan 1.6 Dymanic? Попробуем улучшить его с помощью машинного обучения! Реанимируем старую разработку в статье и добавляем машинное обучение с Q-таблицей. По шагам.

Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)
В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.

Разработка торгового советника с нуля (Часть 15): Доступ к данным в Интернете (I)
Как получить доступ к данным в Интернете в MetaTrader 5. В Интернете у нас есть различные сайты и места, с огромным количеством информации, доступной для тех, кто знает, где искать и как лучше всего использовать эту информацию.

Графика в библиотеке DoEasy (Часть 100): Устраняем недочёты при работе с расширенными стандартными графическими объектами
Сегодня мы немного "подчистим хвосты" — устраним явные недоработки при одновременной работе с расширенными (и стандартными) графическими объектами и объектами-формами на канвасе и исправим ошибки, замеченные при тестировании в прошлой статье. И на этом завершим этот раздел описания библиотеки.

Нейросети — это просто (Часть 49): Мягкий Актор-Критик (Soft Actor-Critic)
Мы продолжаем рассмотрение алгоритмов обучения с подкреплением в решении задач непрерывного пространства действий. И в данной статье предлагаю познакомиться с алгоритмом Soft Аctor-Critic (SAC). Основное преимущество SAC заключается в способности находить оптимальные политики, которые не только максимизируют ожидаемую награду, но и имеют максимальную энтропию (разнообразие) действий.

Нейросети в трейдинге: Практические результаты метода TEMPO
Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.

Реализация алгоритма обучения ARIMA на MQL5
В этой статье мы реализуем алгоритм, который применяет интегрированную модель авторегрессии скользящей средней (модель Бокса-Дженкинса) с использованием метода минимизации функции Пауэллса. Бокс и Дженкинс утверждали, что большинство временных рядов можно смоделировать с помощью одной или обеих из двух структур.

Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий
Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5
Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.

Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением
В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.

Биржевые данные без посредников: подключаем MetaTrader 5 к MOEX через ISS API
В статье предложено решение для интеграции MetaTrader 5 с веб-сервисом MOEX ISS. Прилагаются утилиты для автоматической генерации исходных кодов на основе справочника API и индекса основных элементов сервиса.

Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)
Предлагаемый Вашему вниманию алгоритм Conformer был разработан для целей прогнозирования погоды, которую по изменчивости и капризности можно сравнить с финансовыми рынками. Conformer является комплексным методом. И сочетает в себе преимущества моделей внимания и обычных дифференциальных уравнений.

Разработка торгового советника с нуля (Часть 13): Время и торговля (II)
Сегодня мы построим вторую часть системы Times & Trade для анализа рынка. В предыдущей статье "Times & Trade (I)" мы рассмотрели альтернативную систему для организации графика, чтобы у нас был индикатор, позволяющий как можно быстрее интерпретировать сделки, совершенные на рынке.

Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных
В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.

Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть I): Перемещаемый интерфейс (I)
Раскройте всю мощь динамического представления данных в своих торговых стратегиях или утилитах с помощью нашего подробного руководства по разработке перемещаемого графического интерфейса в MQL5. Погрузитесь в события графика и узнайте, как спроектировать и реализовать простой и множественный перемещаемый графический интерфейс на одном графике. В статье также рассматриваются добавление элементов в графический интерфейс, повышение их функциональности и эстетической привлекательности.

Прогнозирование с помощью моделей ARIMA в MQL5
В этой статье мы продолжаем разработку класса CArima для построения моделей ARIMA, добавляя интуитивно понятные методы прогнозирования.

Роль качества генератора случайных чисел в эффективности алгоритмов оптимизации
В этой статье мы рассмотрим генератор случайных чисел Mersenne Twister и сравним со стандартным в MQL5. Узнаем влияние качества случайных чисел генераторов на результаты алгоритмов оптимизации.

Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть III): Простой перемещаемый торговый интерфейс
В этой серии статей мы исследуем интеграцию интерактивных графических интерфейсов в перемещаемые торговые панели на MQL5. В третьей части мы используем наработки из предыдущих частей, чтобы превратить статические торговые панели в динамические.

Возможности Мастера MQL5, которые вам нужно знать (Часть 02): Карты Кохонена
Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.

Функции в MQL5-приложениях
Функции являются критически важными компонентами в любом языке программирования. Помимо прочего, они помогают разработчикам применять принцип DRY (don't repeat youself, не повторяйся). В статье рассмотрены функции и их создание в MQL5 с помощью простых приложений, которые обогащают вашу торговую систему, но не усложняют ее.

Реализация фактора Януса в MQL5
Гэри Андерсон разработал метод анализа рынка, основанный на теории, которую он назвал фактором Януса. Теория описывает набор индикаторов, которые можно использовать для выявления тенденций и оценки рыночного риска. В этой статье мы реализуем эти инструменты в MQL5.

DoEasy. Сервисные функции (Часть 1): Ценовые паттерны
В статье начнём разрабатывать методы поиска ценовых паттернов по данным таймсерий. Паттерн имеет определённый набор параметров, общий для любого вида и типа паттернов. Все данные такого рода будут сосредоточены в классе объекта базового абстрактного паттерна. Сегодня создадим класс абстрактного паттерна и класс паттерна Пин-бар.

Несколько индикаторов на графике (Часть 04): Начинаем работу с советником
В предыдущих статьях я рассказывал, как создать индикатор с несколькими подокнами — такая возможность становится интересной при использовании пользовательских индикаторов. В этот раз мы рассмотрим, как добавить несколько окон в советник.

Несколько индикаторов на графике (Часть 06): Превращаем MetaTrader 5 в систему RAD (II)
В предыдущей статье я показал, как создать Chart Trade с использованием объектов MetaTrader 5 и превратить платформу в систему RAD. Система работает очень хорошо, и наверняка многие задумывались о создании библиотеки — она позволит иметь всё больше и больше функциональности в предлагаемой системе, и можно будет разработать более интуитивно понятный советник с более приятный и простым в использовании интерфейсом.

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.

Работа с ONNX-моделями в форматах float16 и float8
Форматы данных, используемые для представления моделей машинного обучения, играют ключевую роль в их эффективности. В последние годы появилось несколько новых типов данных, разработанных специально для работы с моделями глубокого обучения. В данной статье мы обратим внимание на два новых формата данных, которые стали широко применяться в современных моделях.

Нейросети — это просто (Часть 43): Освоение навыков без функции вознаграждения
Проблема обучения с подкреплением заключается в необходимости определения функции вознаграждения, которая может быть сложной или затруднительной для формализации, и для решения этой проблемы исследуются подходы, основанные на разнообразии действий и исследовании окружения, которые позволяют обучаться навыкам без явной функции вознаграждения.

Разработка торгового советника с нуля (Часть 19): Новая система ордеров (II)
В данной статье мы будем разрабатывать графическую систему ордеров вида «посмотрите, что происходит». Следует сказать, что мы не начнем с нуля, а модифицируем существующую систему, добавив еще больше объектов и событий на график торгуемого нами актива.

Оптимизация и тестирование торговых стратегий (Часть 1): Взгляд на "Red Dragon H4", "BOLT", "YinYang", и "Statistics SAR"
Так как я постоянно занимаюсь, разработкой разного рода торговых систем сегодня хочу поделиться с Вами несколькими из них по стратегиям "Red Dragon H4", "BOLT", "YinYang" и "Statistics SAR". Данные стратегии были найдены на просторах интернета.

Методы Уильяма Ганна (Часть III): Работает ли астрология?
Влияет ли положение планет и звезд на финансовые рынки? Вооружимся статистикой и большими данными и отправимся в увлекательное путешествие в мир, где пересекаются звезды и биржевые графики.

Разработка торгового советника с нуля (Часть 9): Концептуальный скачок (II)
Размещение Chart Trade в плавающем окне. В предыдущей статье мы создали базовую систему для использования шаблонов внутри плавающего окна.

Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики
В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.

Визуализации сделок на графике (Часть 2): Графическая отрисовка информации
Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке, с возможностью прорисовывания разных тайм-фреймов.

DoEasy. Элементы управления (Часть 4): Элемент управления "Панель", параметры Padding и Dock
В статье реализуем работу таких параметров панели как Padding (внутренние отступы/поля со всех сторон элемента) и Dock (способ расположения объекта внутри контейнера).