Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
Вспоминаем старую трендовую стратегию: два стохастических осциллятора, MA и Фибоначчи
Старые торговые стратегии. В этой статье представлена стратегия отслеживания тренда. Стратегия исключительно техническая и использует несколько индикаторов и инструментов для подачи сигналов и определения целевых уровней. Компоненты стратегии включают в себя: 14-периодный стохастический осциллятор, пятипериодный стохастический осциллятор, скользящую среднюю с периодом 200 и проекцию Фибоначчи (для установки целевых уровней).
Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения
Мы продолжаем рассмотрение алгоритмов обучения моделей прогнозирования траекторий. И в данной статье я предлагаю вам познакомиться с методом под названием “AutoBots”.
Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора
В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.
MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram
В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.
Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении
Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.
Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач
В данной статье мы продолжим разговор о методах сбора данных в обучающую выборку. Очевидно, что в процессе обучения необходимо постоянное взаимодействие с окружающей средой. Но ситуации бывают разные.
Мультибот в MetaTrader (Часть II): улучшенный динамический шаблон
Развивая тему предыдущей статьи про мультибота, я решил создать более гибкий и функциональный шаблон, который обладает большими возможностями и может эффективно применяться как во фрилансе, так и использоваться в виде базы для разработки мультивалютных и мультипериодных советников с возможностью интеграции с внешними решениями.
Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью
В предыдущей статье мы начали изучать нейросети с прямой связью, однако остались неразобранными некоторые моменты. Один из них — проектирование архитектуры. Поэтому в этой статье мы рассмотрим, как спроектировать гибкую нейронную сеть с учетом входных данных, количества скрытых слоев и узлов для каждой сети.
Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures
В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.
Как выбрать торгового советника: Двадцать явных признаков плохого робота
В этой статье мы попытаемся ответить на вопрос, как выбрать подходящего торгового советника. Какие из них лучше всего подходят для нашего портфеля и как мы можем отсеять большую часть торговых роботов, доступных на рынке? В статье представлены двадцать явных признаков некачественного советника. Статья поможет вам принимать более обоснованные решения и создать коллекцию прибыльных торговых советников.
Разработка торговой системы на основе индекса силы быков Bulls Power
Представляю вашему вниманию новую статью из серии, в которой мы учимся строить торговые системы на основе самых популярных индикаторов. На этот раз мы поговорим об Индексе силы быков Bulls Power и создадим торговую систему по его показателям.
Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5
Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.
Разработка торгового советника с нуля (Часть 29): Говорящая платформа
В этой статье мы научимся, как заставить платформу MT5 говорить. А что если мы сделаем советника более веселым? Торговля на финансовых рынках часто является чрезвычайно скучным и монотонным занятием, но мы можем сделать эту работу менее утомительной. Этот проект может стать опасным, если у вас есть проблема, делающая вас зависимым, но на самом деле весь сценарий с модификациями может быть более увлекательным и менее скучным.
Разработка торговой системы на основе индекса силы медведей Bears Power
Представляю вашему вниманию новую статью из серии, в которой мы учимся строить торговые системы на основе самых популярных индикаторов. На этот раз мы поговорим об Индексе силы медведей Bears Power и создадим торговую систему по его показателям.
Нейросети — это просто (Часть 57): Стохастический маргинальный актор-критик (SMAC)
Предлагаем познакомиться с довольно новым алгоритмом Stochastic Marginal Actor-Critic (SMAC), который позволяет строить политики латентных переменных в рамках максимизации энтропии.
Объектно-ориентированное программирование (ООП) в MQL5
Как разработчикам, нам необходимо научиться создавать и разрабатывать программное обеспечение, которое можно использовать многократно и гибко, без дублирования кода, особенно если у нас есть разные объекты с разным поведением. Это можно легко сделать, используя методы и принципы объектно-ориентированного программирования. В этой статье представлены основы объектно-ориентированного программирования в MQL5.
Как построить советник, работающий автоматически (Часть 06): Виды счетов (I)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. Пока наш советник может работать в любой ситуации, но он ещё не готов к автоматизации, поэтому нам нужно проработать несколько моментов.
Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника
Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.
Как построить советник, работающий автоматически (Часть 05): Ручные триггеры (II)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. В конце предыдущей статьи я подумал, что было бы уместно разрешить использование советника вручную хотя бы на время.
Разработка торгового советника с нуля (Часть 23): Новая система ордеров (VI)
Мы сделаем систему ордеров более гибкой. Здесь я покажу вам, как и где внести изменения в код, чтобы делать его более гибким, что позволит нам намного быстрее изменять лимиты позиций.
Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника
В статье рассматривается классическая сеточная стратегия, подробно описана ее автоматизация с помощью советника на MQL5 и проанализированы первоначальные результаты тестирования на истории. Также подчеркивается необходимость в долгом удержании позиций и рассматривается возможность оптимизации ключевых параметров (таких как расстояние, тейк-профит и размеры лотов) в будущих частях. Целью этой серии статей является повышение эффективности торговой стратегии и ее адаптируемости к различным рыночным условиям.
Как построить советник, работающий автоматически (Часть 03): Новые функции
Сегодня вы научитесь создавать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье мы начали разрабатывать систему ордеров, которой будем пользоваться в автоматическом советнике. Однако мы создали только одну из необходимых функций или процедур.
Нужны ли трейдерам услуги разработчиков?
Алготрейдинг становится все более популярным и востребованным, что закономерно привело к появлению спроса на экзотические алгоритмы и нестандартные задачи. Определенная часть таких сложных приложений представлена в Code Base или Маркете и их можно получить за пару кликов, но не всё в них устраивает трейдеров. В этом случае они начинают искать разработчиков, способных написать требуемое приложение, находят их во Фрилансе и выдают заказ.
Все, что вам нужно знать о структуре программы MQL5
Любая программа на любом языке программирования имеет определенную структуру. В этой статье вы изучите основные компоненты структуры программы на MQL5, что может быть очень полезно при создании торговой системы или торгового инструмента для MetaTrader 5.
Тестируем информативность разных типов скользящих средних
Мы все знаем важность скользящей средней для многих трейдеров. Существуют разные типы скользящих средних, которые могут быть полезны в торговле. Мы рассмотрим их и проведем простое сравнение, чтобы увидеть, какой из них может показать лучшие результаты.
Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова
Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.
Нейросети — это просто (Часть 32): Распределенное Q-обучение
В одной из статей данной серии мы с вами уже познакомились с методом Q-обучения. Данный метод усредняет вознаграждения за каждое действие. В 2017 году были представлены сразу 2 работы, в которых большего успеха добиваются при изучении функции распределения вознаграждения. Давайте рассмотрим возможность использования подобной технологии для решения наших задач.
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX
Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
Разработка торговой системы на основе Индекса относительной бодрости Relative Vigor Index
Это новая статья из серии, в которой мы учимся создавать торговые системы по показателям самых популярных технических индикаторов. В этот раз познакомимся с Индексом относительной бодрости (Relative Vigor Index, RVI).
Как построить советник, работающий автоматически (Часть 04): Ручные триггеры (I)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме.
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен
В статье сделаем реалтайм-обновление коллекции тиковых данных и подготовим класс объекта-символа для работы со стаканом цен, работу над которым начнём со следующей статьи.
Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха
В этой статье я попытаюсь использовать нашу логистическую модель, чтобы спрогнозировать крах фондового рынка на основе главнейших акций для экономики США: NETFLIX и APPLE. Мы проанализируем эти акции, будем использовать информацию о предыдущих падениях рынка 2019 и 2020 годов. Посмотрим, как наша модель будет работать в нынешних мрачных условиях.
Разработка и тестирование торговых систем Aroon
В этой статье мы узнаем, как построить торговую систему Aroon, изучив основы индикаторов и необходимые шаги для создания торговой системы на основе индикатора Aroon. После создания этой торговой системы мы проверим, может ли она быть прибыльной или требует дополнительной оптимизации.
Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления
В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.
Нейросети — это просто (Часть 16): Практическое использование кластеризации
В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.
Алгоритм докупки: симуляция мультивалютной торговли
В данной статье мы создадим математическую модель для симуляции мультивалютного ценообразования и завершим исследование принципа диверсификации в рамках поиска механизмов увеличения эффективности торговли, которое я начал в предыдущей статье с теоретических выкладок.
Нейросети — это просто (Часть 53): Декомпозиция вознаграждения
Мы уже не раз говорили о важности правильного подбора функции вознаграждения, которую используем для стимулирования желательного поведения Агента, добавляя вознаграждения или штрафы за отдельные действия. Но остается открытым вопрос о дешифровке наших сигналов Агентом. В данной статье мы поговорим о декомпозиции вознаграждения в части передачи отдельных сигналов обучаемому Агенту.
Нейросети — это просто (Часть 58): Трансформер решений (Decision Transformer—DT)
Мы продолжаем рассмотрение методов обучения с подкреплением. И в данной статье я предлагаю вам познакомиться с несколько иным алгоритмом, который рассматривает политику Агента в парадигме построения последовательности действий.
Может ли Heiken Ashi давать хорошие сигналы в сочетании со скользящими средними?
Комбинации стратегий могут повысить эффективность торговли. Мы можем комбинировать индикаторы и паттерны, чтобы получать дополнительные подтверждения. Скользящие средние помогают нам подтвердить тренд и следовать ему. Это самые известный технический индикатор, что объясняется его простотой и доказанной эффективностью анализа.