Нейросети — это просто (Часть 25): Практикум Transfer Learning
В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
Индикатор исторических позиций на графике в виде диаграммы их прибыли/убытка
В статье рассмотрим вариант получения информации о закрытых позициях по истории их сделок. Создадим простой индикатор, отображающий в виде диаграммы приблизительный профит/убыток позиций на каждом баре.
Групповые файловые операции
Иногда требуется проделать одинаковые операции для некоторой группы файлов. Если у вас есть список файлов, входящих в эту группу, то это не проблема. Но если этот список нужно получить самостоятельно, то возникает вопрос: "Каким образом?" В статье предлагается сделать это с помощью функций FindFirstFile() и FindNextFile(), входящих в библиотеку kernel32.dll.
Разработка торговой системы на основе индикатора DeMarker
Представляю вашему вниманию новую статью из серии, в которой мы учимся создавать торговые системы по показателям самых популярных технических индикаторов. В этой статье мы рассмотрим, как создать торговую систему по индикатору Демарка (DeMarker).
Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
Стать хорошим программистом (Часть 6): 9 привычек для эффективной разработки
Качество разработки — это не только про написание кода. На своем опыте я выявил определенные привычки, которые помогают повысить эффективность разработки. О некоторых из них мы поговорим в этой статье. Статья обязательна к прочтению для всех, кто хочет улучшить навыки написания сложных алгоритмов.
Разработка торгового советника с нуля (Часть 7): Добавляем Volume At Price (I)
Это один из самых мощных индикаторов из существующих. Те, кто торгует и старается иметь определенную степень уверенности, не могут не иметь этот индикатор на своем графике. Хотя чаще всего его используют те, кто торгует, наблюдая за лентой сделок («tape reading»). Также этот индикатор могут использовать и те, кто использует только Price Action.
MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram
В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 1): Сигналы на основе ADX в сочетании с Parabolic SAR
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами и т. д.) более чем одной парой символов с одного графика.
Разрабатываем мультивалютный советник (Часть 2): Переход к виртуальным позициям торговых стратегий
Продолжим разработку мультивалютного советника с несколькими параллельно работающими стратегиями. Попробуем перенести всю работу, связанную с открытием рыночных позиций с уровня стратегий на уровень эксперта, управляющего стратегиями. Сами стратегии будут торговать только виртуально, не открывая рыночных позиций.
Вспоминаем старую трендовую стратегию: два стохастических осциллятора, MA и Фибоначчи
Старые торговые стратегии. В этой статье представлена стратегия отслеживания тренда. Стратегия исключительно техническая и использует несколько индикаторов и инструментов для подачи сигналов и определения целевых уровней. Компоненты стратегии включают в себя: 14-периодный стохастический осциллятор, пятипериодный стохастический осциллятор, скользящую среднюю с периодом 200 и проекцию Фибоначчи (для установки целевых уровней).
Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I
Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python
Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
Нейросети — это просто (Часть 73): АвтоБоты прогнозирования ценового движения
Мы продолжаем рассмотрение алгоритмов обучения моделей прогнозирования траекторий. И в данной статье я предлагаю вам познакомиться с методом под названием “AutoBots”.
Графика в библиотеке DoEasy (Часть 88): Коллекция графических объектов — двумерный динамический массив для хранения динамически изменяемых свойств объектов
В статье создадим класс динамического многомерного массива с возможностью изменения количества данных в любом измерении. На основе созданного класса создадим двумерный динамический массив для хранения динамически изменяемых некоторых свойств графических объектов.
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)
GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора
В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.
Освоение ONNX: Переломный момент для MQL5-трейдеров
Погрузитесь в мир ONNX - мощного открытого формата для обмена моделями машинного обучения. Узнайте, как использование ONNX может произвести революцию в алгоритмической торговле на MQL5, позволяя трейдерам беспрепятственно интегрировать передовые модели искусственного интеллекта и поднять свои стратегии на новый уровень. Раскройте секреты кросс-платформенной совместимости и узнайте, как раскрыть весь потенциал ONNX в своей торговле на MQL5. Улучшите свою торговлю с помощью этого подробного руководства по ONNX.
Риск-менеджер для ручной торговли
В данной статье мы подробно раскроем написание класса риск-менеджера для ручной торговли с нуля. Также данный класс может быть использован как базовый класс для наследования трейдерам, которые торгуют алгоритмически.
Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении
Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.
Мультибот в MetaTrader (Часть II): улучшенный динамический шаблон
Развивая тему предыдущей статьи про мультибота, я решил создать более гибкий и функциональный шаблон, который обладает большими возможностями и может эффективно применяться как во фрилансе, так и использоваться в виде базы для разработки мультивалютных и мультипериодных советников с возможностью интеграции с внешними решениями.
Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью
В предыдущей статье мы начали изучать нейросети с прямой связью, однако остались неразобранными некоторые моменты. Один из них — проектирование архитектуры. Поэтому в этой статье мы рассмотрим, как спроектировать гибкую нейронную сеть с учетом входных данных, количества скрытых слоев и узлов для каждой сети.
Нейросети — это просто (Часть 67): Использование прошлого опыта для решения новых задач
В данной статье мы продолжим разговор о методах сбора данных в обучающую выборку. Очевидно, что в процессе обучения необходимо постоянное взаимодействие с окружающей средой. Но ситуации бывают разные.
Прочие классы в библиотеке DoEasy (Часть 70): Расширение функционала и автообновление коллекции объектов-чартов
В статье расширим функционал объектов-чартов, организуем навигацию по графикам, создание скриншотов, сохранение и применение шаблонов к графикам. Также сделаем автоматическое обновление коллекции объектов-чартов, их окон и индикаторов в них.
Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures
В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.
Разработка экспериментальной DLL с поддержкой многопоточности в C++ для MetaTrader 5 на Linux
В статье рассмотрен процесс разработки для платформы MetaTrader 5 исключительно в системе Linux. При этом конечный продукт без проблем работает как в Windows, так и в Linux. Мы познакомимся с Wine и Mingw - важными инструментами кроссплатформенной разработки. В Mingw реализована потоковая передача (POSIX и Win32), что необходимо учитывать при выборе подходящего инструмента. Затем мы создадим DLL для проверки концепции и используем ее в коде MQL5, а также сравним производительность обеих реализаций потоков. Статья призвана стать отправной точкой для ваших собственных экспериментов. После прочтения статьи вы сможете создавать инструменты для MetaTrader в Linux.
Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен
В статье начнём разработку функционала для работы со стаканом цен. Создадим класс объекта абстрактной заявки стакана цен и его наследников.
Торговля по алгоритму: ИИ и его путь к золотым вершинам
В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 6): Два индикатора RSI пересекают линии друг друга
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует два индикатора RSI с пересекающимися линиями - быстрый RSI, который пересекается с медленным.
Графика в библиотеке DoEasy (Часть 91): События стандартных графических объектов в программе. История изменения имени объекта
В статье доработаем базовый функционал для предоставления контроля событий графических объектов из программы, работающей на основе библиотеки. Начнём создание функционала для хранения истории изменений свойств графических объектов на примере свойства "Имя объекта".
Графики индекса доллара и индекса евро — пример сервиса в MetaTrader 5
На примере программы-сервиса рассмотрим создание и обновление графиков индекса доллара (USDX) и индекса евро (EURX). При запуске сервиса будем проверять наличие нужного синтетического инструмента, создавать его при его отсутствии и размещать в окне Обзор рынка. Далее будет создана история синтетического инструмента — минутная и тиковая, и будет открыт график созданного инструмента.
Запуск на Linux-desktop клиентского терминала MetaTrader 4 build 198
Описание пошаговой подготовки Linux-desktop с использованием неэмулятора wine для запуска на нем клиентского терминала MetaTrader 4 build 198.
Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5
Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.
Разработка торговой системы на основе индекса силы быков Bulls Power
Представляю вашему вниманию новую статью из серии, в которой мы учимся строить торговые системы на основе самых популярных индикаторов. На этот раз мы поговорим об Индексе силы быков Bulls Power и создадим торговую систему по его показателям.
Как выбрать торгового советника: Двадцать явных признаков плохого робота
В этой статье мы попытаемся ответить на вопрос, как выбрать подходящего торгового советника. Какие из них лучше всего подходят для нашего портфеля и как мы можем отсеять большую часть торговых роботов, доступных на рынке? В статье представлены двадцать явных признаков некачественного советника. Статья поможет вам принимать более обоснованные решения и создать коллекцию прибыльных торговых советников.
Треугольный арбитраж с прогнозами
В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?
Интервью с Валерием Мазуренко (ATC 2010)
К концу первой торговой недели на первом месте оказался Валерий Мазуренко (notused) с мультивалютным экспертом ch2010. Ранее воспринимавший трейдинг как хобби, Валерий уже полгода пытается монетизировать свое «увлечение» и написать устойчивый советник для реальной торговли. В этом интервью экспертописатель делится своими взглядами на роль математики в трейдинге и рассказывает, почему объектно-ориентированный подход отлично подходит для написания мультивалютников.
Создаем 3D-бары на основе времени, цены и объема
Что такое многомерные 3D-графики цен и как они создаются. Как 3D-бары предсказывают развороты цены, и как Python и MetaTrader 5 позволяют строить эти объемные бары в режиме реального времени.
Машинное обучение и Data Science (Часть 13): Анализируем финансовый рынок с помощью метода главных компонент (PCA)
Попробуем качественно улучшить анализ финансовых рынков с помощью метода главных компонент (Principal Component Analysis, PCA). Узнаем, как этот метод может помочь выявлять скрытые закономерности в данных, определять скрытые рыночные тенденции и оптимизировать инвестиционные стратегии. В этой статье мы посмотрим, как метод PCA дает новую перспективу для анализа сложных финансовых данных, помогая увидеть идеи, которые мы упустили при использовании традиционных подходов. Дает ли применение метода PCA на данных финансовых рынков конкурентное преимущество и поможет ли быть на шаг впереди?