Статьи по программированию на языках MQL4 и MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Визуализации сделок на графике (Часть 1): Выбор периода для анализа

Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке с возможностью прорисовывания разных таймфреймов.
preview
Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.
preview
Разработка пользовательского индикатора Heiken Ashi с помощью MQL5

Разработка пользовательского индикатора Heiken Ashi с помощью MQL5

В этой статье мы узнаем, как создать собственный индикатор с использованием MQL5 на основе наших предпочтений, который будет использоваться в MetaTrader 5 для интерпретации графиков или применяться в составе советников.
preview
Индикатор силы и направления тренда на 3D-барах

Индикатор силы и направления тренда на 3D-барах

Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
preview
Своп-арбитраж на Форекс: Собираем синтетический портфель и создаем стабильный своп-поток

Своп-арбитраж на Форекс: Собираем синтетический портфель и создаем стабильный своп-поток

Хотите узнать, как извлекать выгоду из разницы в процентных ставках? В статье мы посмотрим, как использовать своп-арбитраж на Форексе, чтобы каждую ночь получать стабильный доход, создавая портфель, устойчивый к рыночным колебаниям.
preview
Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Количественный подход в управлении рисками: Применение VaR модели для оптимизации мультивалютного портфеля с Python и MetaTrader 5

Эта статья раскрывает потенциал Value at Risk (VaR) модели для оптимизации мультивалютного портфеля. Используя мощь Python и функционал MetaTrader 5, мы демонстрируем, как реализовать VaR-анализ для эффективного распределения капитала и управления позициями. От теоретических основ до практической реализации, статья охватывает все аспекты применения одной из наиболее устойчивых систем расчета рисков — VaR — в алгоритмической торговле.
preview
Ложные регрессии в Python

Ложные регрессии в Python

Ложные регрессии возникают, когда два временных ряда демонстрируют высокую степень корреляции чисто случайно, что приводит к вводящим в заблуждение результатам регрессионного анализа. В таких случаях, даже если переменные кажутся связанными, корреляция является случайной и модель может быть ненадежной.
preview
Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей

На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.
preview
Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума

Нейросети — это просто (Часть 72): Прогнозирование траекторий в условиях наличия шума

Качество прогнозирование будущих состояний играет важную роль в метода Goal-Conditioned Predictive Coding, с которым мы познакомились в предыдущей статье. В данной статье я хочу познакомить Вас с алгоритмом, способным значительно повысить качество прогнозирования в стохастических средах, к которым можно отнести и финансовые рынки.
preview
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть I): Кластеризация

В данной статье мы рассмотрим инновационный метод оптимизации, названный BSO (Brain Storm Optimization), который вдохновлен природным явлением - "мозговым штурмом". Мы также обсудим новый подход к решению многомодальных задач оптимизации, который использует метод BSO и позволяет находить несколько оптимальных решений без необходимости заранее определять количество подпопуляций. В статье мы также рассмотрим методы кластеризации K-Means и K-Means++.
preview
Нейросети — это просто (Часть 47): Непрерывное пространство действий

Нейросети — это просто (Часть 47): Непрерывное пространство действий

В данной статье мы расширяем спектр задач нашего агента. В процесс обучения будут включены некоторые аспекты мани- и риск-менеджмента, которые являются неотъемлемой частью любой торговой стратегии.
preview
Разработка торгового советника с нуля (Часть 28): Навстречу будущему (III)

Разработка торгового советника с нуля (Часть 28): Навстречу будущему (III)

Наша система ордеров по-прежнему не справляется с одной задачей, но мы, НАКОНЕЦ, разберемся с этим. На платформе MetaTrader 5 есть система тикетов, которая позволяет нам создавать или корректировать значения ордеров. Кстати, идея состоит в том, чтобы иметь советника, который поможет нам сделать ту же систему тикетов быстрее и эффективнее.
preview
Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)

Популяционные алгоритмы оптимизации: Изменяем форму и смещаем распределения вероятностей и тестируем на "Умном головастике" (Smart Cephalopod, SC)

В данной статье исследуется влияние изменения формы распределений вероятностей на производительность алгоритмов оптимизации. Мы проводим эксперименты на тестовом алгоритме 'Умный головастик' (SC), чтобы оценить эффективность различных распределений вероятностей в контексте оптимизационных задач.
preview
Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации

Для получения хорошего советника нам надо подобрать для него множество хороших наборов параметров экземпляров торговых стратегий. Это можно делать вручную, запуская оптимизацию на разных символах, и затем отбирая лучшие результаты. Но лучше поручить эту работу программе и заняться более продуктивной деятельностью.
preview
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer

При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.
preview
Интерпретация моделей: Более глубокое понимание моделей машинного обучения

Интерпретация моделей: Более глубокое понимание моделей машинного обучения

Машинное обучение — сложная и полезная область для любого человека независимо от опыта. В этой статье мы погрузимся во внутренние механизмы, лежащие в основе создаваемых моделей, исследуем сложный мир функций, прогнозов и эффективных решений и получим четкое понимание интерпретации моделей. Научитесь искусству поиска компромиссов, улучшения прогнозов, ранжирования важности параметров и принятия надежных решений. Статья поможет вам повысить производительность моделей машинного обучения и извлечь больше пользы от применения методологий машинного обучения.
preview
Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы

Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.
preview
Разработка системы репликации — моделирование рынка (Часть 01): Первые эксперименты (I)

Разработка системы репликации — моделирование рынка (Часть 01): Первые эксперименты (I)

Что вы думаете: создавать системы для изучения рынка, когда он закрыт, или создать систему, которая позволит моделировать рыночные ситуации? Здесь мы начнем новую серию статей, посвященных этому вопросу.
preview
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть IV): Оптимизация простой сеточной стратегии (I)

Модифицированный советник Grid-Hedge в MQL5 (Часть IV): Оптимизация простой сеточной стратегии (I)

В четвертой части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. В этот раз будем совершенствовать советник Simple Hedge. Будем использовать математический анализ и подход грубой силы (brute force) чтобы оптимизировать стратегию. Эта статья углубляется в математическую оптимизацию стратегии и закладывает основу для будущего исследования оптимизации на основе кода в последующих частях.
preview
Разрабатываем мультивалютный советник (Часть 5): Переменный размер позиций

Разрабатываем мультивалютный советник (Часть 5): Переменный размер позиций

В предыдущих частях разрабатываемый советник имел возможность использовать только фиксированный размер позиций для торговли. Это допустимо для тестирования, но нежелательно при торговле на реальном счёте. Давайте обеспечим возможность торговли с переменным размером позиций.
preview
Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики

Нейросети — это просто (Часть 44): Изучение навыков с учетом динамики

В предыдущей статье мы познакомились с методом DIAYN, который предлагает алгоритм изучения разнообразных навыков. Использование полученных навыкает может быть использовано различных задач. Но подобные навыки могут быть довольно непредсказуемы, что может осложнить из использование. В данной статье мы рассмотрим алгоритм обучения предсказуемых навыков.
preview
Нейросети — это просто (Часть 46): Обучение с подкреплением, направленное на достижение целей (GCRL)

Нейросети — это просто (Часть 46): Обучение с подкреплением, направленное на достижение целей (GCRL)

Предлагаю Вам познакомиться с ещё одним направлением в области обучения с подкреплением. Оно называется обучением с подкреплением, направленное на достижение целей (Goal-conditioned reinforcement learning, GCRL). В этом подходе агент обучается достигать различных целей в определенных сценариях.
preview
Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени

Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени

Как рынок ходит по отношениям, основанным на числах Фибоначчи? Эта последовательность, где каждое следующее число равно сумме двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21...), не только описывает рост популяции кроликов. Рассмотрим гипотезу Пифагора о том, что все в мире подчиняется определенным соотношениям чисел...
preview
Интеграция ML-моделей с тестером стратегий (Часть 3): Управление файлами CSV(II)

Интеграция ML-моделей с тестером стратегий (Часть 3): Управление файлами CSV(II)

Данный материал - полное руководство по созданию класса в MQL5 для эффективного управления CSV-файлами. Вы поймете, как реализуются методы открытия, записи, чтения и преобразования данных и как можно использовать их для хранения и доступа к информации. Кроме того, мы обсудим ограничения и важнейшие аспекты использования такого класса. Это ценный материал для тех, кто хочет научиться обрабатывать CSV-файлы в MQL5.
preview
Шаблоны проектирования в MQL5 (Часть I): Порождающие шаблоны (Creational Patterns)

Шаблоны проектирования в MQL5 (Часть I): Порождающие шаблоны (Creational Patterns)

Существуют методы, которые можно использовать для решения типовых задач. Поняв один раз, как использовать эти методы, можно затем эффективно писать программы и применять концепцию DRY ("Не повторяйся"). В этом контексте очень полезными оказываются шаблоны проектирования, которые могут давать решения хорошо описанных и повторяющихся проблем.
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator

Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator

Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует индикаторы ZigZag и Awesome Oscillator, фильтрующие сигналы друг друга.
preview
DoEasy. Сервисные функции (Часть 3): Паттерн "Внешний бар"

DoEasy. Сервисные функции (Часть 3): Паттерн "Внешний бар"

В статье разработаем паттерн Price Action "Внешний Бар" в библиотеке DoEasy и оптимизируем методы доступа к управлению ценовыми паттернами. Кроме того, проведём работу по исправлению ошибок и недоработок, выявленных при тестировании библиотеки.
preview
Автоматическая оптимизация параметров для торговых стратегий с Python и MQL5

Автоматическая оптимизация параметров для торговых стратегий с Python и MQL5

Существует несколько типов алгоритмов самостоятельной оптимизации торговых стратегий и параметров. Эти алгоритмы используются для автоматического улучшения торговых стратегий на основе исторических и текущих рыночных данных. В этой статье мы рассмотрим один из них на примерах реализаций на Python и MQL5.
preview
Разработка MQTT-клиента для MetaTrader 5: методология TDD

Разработка MQTT-клиента для MetaTrader 5: методология TDD

Статья представляет собой первую попытку разработать нативный MQTT-клиент для MQL5. MQTT - это протокол обмена данными по принципу "издатель - подписчик". Он легкий, открытый, простой и разработан так, чтобы его было легко внедрить. Это позволяет применять его во многих ситуациях.
preview
Нейросети в трейдинге: Агент с многоуровневой памятью

Нейросети в трейдинге: Агент с многоуровневой памятью

Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.
preview
DoEasy. Элементы управления (Часть 5): Базовый WinForms-объект, элемент управления "Панель", параметр AutoSize

DoEasy. Элементы управления (Часть 5): Базовый WinForms-объект, элемент управления "Панель", параметр AutoSize

В статье создадим базовый объект всех WinForms-объектов библиотеки и приступим к реализации свойства AutoSize WinForms-объекта "Панель" — автоизменение размера под его внутреннее содержимое.
preview
Парадигмы программирования (Часть 1): Процедурный подход к разработке советника на основе ценовой динамики

Парадигмы программирования (Часть 1): Процедурный подход к разработке советника на основе ценовой динамики

Узнайте о парадигмах программирования и их применении в коде MQL5. В этой статье исследуются особенности процедурного программирования, а также предлагаются практические примеры. Вы узнаете, как разработать советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Кроме того, статья знакомит с парадигмой функционального программирования.
preview
Введение в исследование фрактальных рыночных структур с помощью машинного обучения

Введение в исследование фрактальных рыночных структур с помощью машинного обучения

В данной статье предпринята попытка рассмотрения финансовых временных рядов с точки зрения самоподобных фрактальных структур. Поскольку мы имеем слишком много аналогий, которые подтверждают возможность рассматривать рыночные котировки в качестве самоподобных фракталов, то имеем возможность составить представления о горизонтах прогнозирования таких структур.
preview
Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)

Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)

Мы давно уже усвоили, что большую роль в стабильности обучения модели играет предварительная обработка исходных данных. И для online обработки "сырых" исходных данных мы часто используем слой пакетной нормализации. Но порой возникает необходимость обратной процедуры. Об одном из возможных подходов к решению подобных задач мы говорим в данной статье.
preview
Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)

Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)

В этой статье рассматриваются частые вопросы, которые начинающие программисты задают на форуме MQL5. Также демонстрируются практические решения. Мы научимся совершать основные действия: покупку и продажу, получение цен свечей, а также управление торговыми аспектами, включая торговые лимиты, периоды и пороговые значения прибыли/убытка. В статье представлены пошаговые инструкции, которые помогут вам лучше понять и реализовать обсуждаемые концепции на MQL5.
preview
DoEasy. Элементы управления (Часть 27): Продолжаем работу над WinForms-объектом "ProgressBar"

DoEasy. Элементы управления (Часть 27): Продолжаем работу над WinForms-объектом "ProgressBar"

В статье продолжим разработку элемента управления ProgressBar. Создадим функционал для управления полосой прогресса и визуальными эффектами.
preview
Популяционные алгоритмы оптимизации: Алгоритм эволюции разума (Mind Evolutionary Computation, MEC)

Популяционные алгоритмы оптимизации: Алгоритм эволюции разума (Mind Evolutionary Computation, MEC)

В данной статье рассматривается алгоритм семейства MEC, называемый простым алгоритмом эволюции разума (Simple MEC, SMEC). Алгоритм отличается красотой заложенной идеи и простотой реализации.
preview
Изучение MQL5 — от новичка до профи (Часть IV): О массивах, функциях и глобальных переменных терминала

Изучение MQL5 — от новичка до профи (Часть IV): О массивах, функциях и глобальных переменных терминала

Статья является продолжением цикла для начинающих. В ней подробно рассказано о массивах данных, взаимодействии данных и функций, а также о глобальных переменных терминала, позволяющих обмениваться данными между разными MQL5 программами.
preview
Упрощаем торговлю на новостях (Часть 1): Создаем базу данных

Упрощаем торговлю на новостях (Часть 1): Создаем базу данных

Торговля на новостях может быть сложной и утомительной. В этой статье мы рассмотрим шаги по получению новостных данных. Кроме того, мы узнаем об экономическом календаре MQL5 и о том, что он может предложить.