Статьи по программированию на языках MQL4 и MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Большинство слушателей моих курсов считали, что язык MQL5 сложен для понимания. Кроме того, они искали простые способы автоматизации некоторых процессов. В этой статье вы узнаете как сходу начать работать в MQL5 даже без навыков программирования и даже если в прошлом у вас уже были неудачные попытки освоить эту тему.
preview
Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Алгоритм поиска в окрестности — Across Neighbourhood Search (ANS)

Статья раскрывает потенциал алгоритма ANS, как важного шага в развитии гибких и интеллектуальных методов оптимизации, способных учитывать специфику задачи и динамику окружающей среды в пространстве поиска.
preview
DoEasy. Элементы управления (Часть 20): WinForms-объект SplitContainer

DoEasy. Элементы управления (Часть 20): WinForms-объект SplitContainer

Сегодня начнём разрабатывать элемент управления SplitContainer из набора элементов MS Visual Studio. Этот элемент состоит из двух панелей, разделённых вертикальным или горизонтальным перемещаемым разделителем.
preview
DoEasy. Сервисные функции (Часть 1): Ценовые паттерны

DoEasy. Сервисные функции (Часть 1): Ценовые паттерны

В статье начнём разрабатывать методы поиска ценовых паттернов по данным таймсерий. Паттерн имеет определённый набор параметров, общий для любого вида и типа паттернов. Все данные такого рода будут сосредоточены в классе объекта базового абстрактного паттерна. Сегодня создадим класс абстрактного паттерна и класс паттерна Пин-бар.
preview
Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5

Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.
preview
Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий

Нейросети — это просто (Часть 74): Адаптивное прогнозирование траекторий

Предлагаю Вам познакомиться с довольно эффективным методом многоагентного прогнозирования траекторий, который способен адаптироваться к различным состояниям окружающей среды.
Графика в библиотеке DoEasy (Часть 90): События стандартных графических объектов. Базовый функционал
Графика в библиотеке DoEasy (Часть 90): События стандартных графических объектов. Базовый функционал

Графика в библиотеке DoEasy (Часть 90): События стандартных графических объектов. Базовый функционал

В статье создадим базовый функционал для отслеживания событий стандартных графических объектов. Начнем с события двойного щелчка мыши на графическом объекте.
preview
Использование алгоритма машинного обучения PatchTST для прогноза ценовых движений на следующие 24 часа

Использование алгоритма машинного обучения PatchTST для прогноза ценовых движений на следующие 24 часа

В этой статье мы применим относительно сложный нейросетевой алгоритм PatchTST, реализованный в 2023 году, для прогнозирования ценовых движений на ближайшие 24 часа. Воспользуемся официальным репозиторием, внесем небольшие изменения, обучим модель для EURUSD и применим ее для формирования будущих прогнозов на языке Python или MQL5.
preview
Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры

Разрабатываем мультивалютный советник (Часть 3): Ревизия архитектуры

Мы уже несколько продвинулись в разработке мультивалютного советника с несколькими параллельно работающими стратегиями. С учетом накопленного опыта проведем ревизию архитектуры нашего решения и попробуем ее улучшить, пока не ушли слишком далеко вперед.
preview
Изучаем PrintFormat() и берем готовые к использованию примеры

Изучаем PrintFormat() и берем готовые к использованию примеры

Статья будет полезна как новичкам, так и уже опытным разработчикам. В ней мы рассмотрим работу функции PrintFormat(), разберём примеры форматирования строк и напишем шаблоны для вывода различной информации в журнал терминала.
preview
Нейросети в трейдинге: Практические результаты метода TEMPO

Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.
preview
Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки

В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.
preview
Критерии тренда в трейдинге

Критерии тренда в трейдинге

Тренды являются важной частью многих торговых стратегий. В этой статье мы рассмотрим некоторые инструменты, используемые для определения трендов и их характеристик. Понимание и правильная интерпретация трендов могут значительно повысить эффективность трейдинга и минимизировать риски.
preview
Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

Элементы корреляционного анализа в MQL5: Критерий независимости хи-квадрат Пирсона и корреляционное отношение

В статье рассматриваются классические инструменты корреляционного анализа. Даются краткие теоретические основы, а также практическая реализация критерия независимости хи-квадрат Пирсона и коэффициента корреляционного отношения.
preview
Пример ансамбля ONNX-моделей в MQL5

Пример ансамбля ONNX-моделей в MQL5

ONNX (Open Neural Network eXchange) — открытый стандарт представления нейронных сетей. В данной статье мы покажем возможность одновременного использования двух ONNX-моделей в одном эксперте.
preview
Функции в MQL5-приложениях

Функции в MQL5-приложениях

Функции являются критически важными компонентами в любом языке программирования. Помимо прочего, они помогают разработчикам применять принцип DRY (don't repeat youself, не повторяйся). В статье рассмотрены функции и их создание в MQL5 с помощью простых приложений, которые обогащают вашу торговую систему, но не усложняют ее.
preview
Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)

Нейросети — это просто (Часть 69): Ограничение политики поведения на основе плотности офлайн данных (SPOT)

В оффлайн обучении мы используем фиксированный набор данных, что ограничивает покрытие разнообразия окружающей среды. В процессе обучения наш Агент может генерировать действия вне этого набора. При отсутствии обратной связи от окружающей среды корректность оценок таких действий вызывает вопросы. Поддержание политики Агента в пределах обучающей выборки становится важным аспектом для обеспечения надежности обучения. Об этом мы и поговорим в данной статье.
preview
Индикатор прогноза волатильности при помощи Python

Индикатор прогноза волатильности при помощи Python

Прогнозируем будущую экстремальную волатильность при помощи бинарной классификации. Создаем индикатор прогноза экстремальной волатильности с использованием машинного обучения.
preview
Выявление и классификация фрактальных паттернов посредством машинного обучения

Выявление и классификация фрактальных паттернов посредством машинного обучения

В этой статье мы затронем интригующую тему фрактального анализа и прогнозирования рынков посредством машинного обучения. Это только первые шаги на пути к исследованию многообразных фрактальных структур, которые образуются на графиках финансовых котировок. Мы используем корреляцию для поиска паттернов и алгоритм CatBoost для классификации этих паттернов.
preview
Разработка торгового советника с нуля (Часть 30): CHART TRADE теперь как индикатор?!

Разработка торгового советника с нуля (Часть 30): CHART TRADE теперь как индикатор?!

Сегодня мы снова будем использовать Chart Trade... но теперь как индикатор, который может присутствовать или не присутствовать на графике.
preview
Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)

Нейросети — это просто (Часть 60): Онлайн Трансформер решений (Online Decision Transformer—ODT)

Последние 2 статьи были посвящены методу Decision Transformer, который моделирует последовательности действий в контексте авторегрессионной модели желаемых вознаграждений. В данной статье мы рассмотрим ещё один алгоритм оптимизации данного метода.
preview
Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)

Нейросети — это просто (Часть 83): Алгоритм пространственно-временного преобразователя постоянного внимания (Conformer)

Предлагаемый Вашему вниманию алгоритм Conformer был разработан для целей прогнозирования погоды, которую по изменчивости и капризности можно сравнить с финансовыми рынками. Conformer является комплексным методом. И сочетает в себе преимущества моделей внимания и обычных дифференциальных уравнений.
preview
Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)

Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)

Наконец-то визуальная система заработает... хотя пока не до конца. Здесь мы закончим вносить основные изменения, которых будет не мало, но они все необходимы, и вся работа будет достаточно интересной.
preview
Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения

Нейросети — это просто (Часть 42): Прокрастинация модели, причины и методы решения

Прокрастинация модели в контексте обучения с подкреплением может быть вызвана несколькими причинами, и решение этой проблемы требует принятия соответствующих мер. В статье рассмотрены некоторые из возможных причин прокрастинации модели и методы их преодоления.
preview
Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)

Нейросети — это просто (Часть 54): Использование случайного энкодера для эффективного исследования (RE3)

Каждый раз, при рассмотрении методов обучения с подкреплением, мы сталкиваемся с вопросом эффективного исследования окружающей среды. Решение данного вопроса часто приводит к усложнению алгоритма и обучению дополнительных моделей. В данной статье мы рассмотрим альтернативный подход к решению данной проблемы.
preview
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.
preview
Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)

Несколько индикаторов на графике (Часть 05): Превращаем MetaTrader 5 в систему RAD (I)

Несмотря на то, что многие люди не умеют программировать, они достаточно креативны и имеют отличные идеи, но отсутствие знаний или понимания программирования мешает им сделать некоторые вещи. Давайте посмотрим вместе, как создать Chart Trade, но используя саму платформу MT5, как будто это IDE.
preview
Реализация алгоритма обучения ARIMA на MQL5

Реализация алгоритма обучения ARIMA на MQL5

В этой статье мы реализуем алгоритм, который применяет интегрированную модель авторегрессии скользящей средней (модель Бокса-Дженкинса) с использованием метода минимизации функции Пауэллса. Бокс и Дженкинс утверждали, что большинство временных рядов можно смоделировать с помощью одной или обеих из двух структур.
preview
Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики

Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики

В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.
preview
Машинное обучение и Data Science (Часть 14): Применение карт Кохонена на рынках

Машинное обучение и Data Science (Часть 14): Применение карт Кохонена на рынках

Хотите найти новый подход в торговле, который поможет ориентироваться на сложных и постоянно меняющихся рынках? Взгляните на карты Кохонена — инновационную форму искусственных нейронных сетей, которая поможет выявить скрытые закономерности и тренды в рыночных данных. В этой статье мы рассмотрим, как работают карты Кохонена и как их использовать для разработки эффективных торговых стратегий. Думаю, этот новый подход будет интересен как опытным трейдерам, так и начинающим.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 54): Классы-наследники абстрактного базового индикатора

Работа с таймсериями в библиотеке DoEasy (Часть 54): Классы-наследники абстрактного базового индикатора

В статье рассмотрим создание классов объектов-наследников базового абстрактного индикатора. Такие объекты дадут нам доступ к возможностям создавать индикаторные советники, собирать и получать статистику значений данных разных индикаторов и цен. Также создадим коллекцию объектов-индикаторов, из которой можно будет получать доступ к свойствам и данным каждого созданного в программе индикатора.
preview
DoEasy. Элементы управления (Часть 3): Создание привязанных элементов управления

DoEasy. Элементы управления (Часть 3): Создание привязанных элементов управления

В статье разберём создание подчинённых элементов управления, привязанных к базовому элементу, создаваемых непосредственно при помощи функционала базового элемента управления. Помимо поставленной выше задачи, немного поработаем над объектом-тенью графического элемента, так как при её использовании для любого из объектов, позволяющих иметь тень, до сих пор есть неисправленные ошибки логики
preview
Разработка торгового советника с нуля (Часть 15): Доступ к данным в Интернете (I)

Разработка торгового советника с нуля (Часть 15): Доступ к данным в Интернете (I)

Как получить доступ к данным в Интернете в MetaTrader 5. В Интернете у нас есть различные сайты и места, с огромным количеством информации, доступной для тех, кто знает, где искать и как лучше всего использовать эту информацию.
preview
Графика в библиотеке DoEasy (Часть 100): Устраняем недочёты при работе с расширенными стандартными графическими объектами

Графика в библиотеке DoEasy (Часть 100): Устраняем недочёты при работе с расширенными стандартными графическими объектами

Сегодня мы немного "подчистим хвосты" — устраним явные недоработки при одновременной работе с расширенными (и стандартными) графическими объектами и объектами-формами на канвасе и исправим ошибки, замеченные при тестировании в прошлой статье. И на этом завершим этот раздел описания библиотеки.
preview
StringFormat(). Обзор, готовые примеры использования

StringFormat(). Обзор, готовые примеры использования

Статья является продолжением обзора функции PrintFormat(). Рассмотрим вкратце форматирование строк при помощи StringFormat() и их дальнейшее использование в программе. Напишем шаблоны для вывода информации о символе в журнал терминала. Статья будет полезна как новичкам, так и уже опытным разработчикам.
preview
Разработка и тестирование торговых систем на основе Канала Кельтнера

Разработка и тестирование торговых систем на основе Канала Кельтнера

В этой статье мы рассмотрим торговые системы, использующие очень важную концепцию финансового рынка — волатильность. Мы изучим торговую систему, основанную на канала Кельтнера (Keltner Channel), включая ее реализацию в коде и тестирование на различных активах.
preview
Нейросети — это просто (Часть 77): Кросс-ковариационный Трансформер (XCiT)

Нейросети — это просто (Часть 77): Кросс-ковариационный Трансформер (XCiT)

В своих моделях мы часто используем различные алгоритмы внимание. И, наверное, чаще всего мы используем Трансформеры. Основным их недостатком является требование к ресурсам. В данной статье я хочу предложить Вам познакомиться с алгоритмом, который поможет снизить затраты на вычисления без потери качества.
preview
Торговая стратегия "Захват ликвидности" (Liquidity Grab)

Торговая стратегия "Захват ликвидности" (Liquidity Grab)

Торговая стратегия захвата ликвидности является ключевым компонентом Концепции умных денег (Smart Money Concepts (SMC), которая направлена на выявление и использование действий институциональных игроков на рынке. Она предполагает нацеливание на области с высокой ликвидностью, такие как зоны поддержки или сопротивления, где крупные ордера могут спровоцировать движение цены до того, как рынок возобновит свой тренд. В настоящей статье подробно объясняется концепция захвата ликвидности и описывается процесс разработки советника по торговой стратегии захвата ликвидности на MQL5.
preview
Разработка торговой системы на основе индикатора OBV

Разработка торговой системы на основе индикатора OBV

Это новая статья, продолжающая нашу серию для начинающих MQL5-программистов, в которой мы учимся строить торговые системы с использованием самых популярных индикаторов. На этот раз мы будем изучать индикатор балансового объема On Balance Volume (OBV) — узнаем, как его использовать и как создать торговую систему на его основе.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.