Треугольные и пилообразные волны: инструменты для трейдера
Одним из методов технического анализа является волновой анализ. В этой статье мы рассмотрим волны несколько необычного вида — треугольные и пилообразные. На основе этих волн можно построить несколько технических индикаторов, с помощью которых можно анализировать движение цены на рынке.
Нейросети — это просто (Часть 70): Улучшение политики с использованием операторов в закрытой форме (CFPI)
В этой статье мы предлагаем познакомиться с алгоритмом, который использует операторы улучшения политики в закрытой форме для оптимизации действий Агента в офлайн режиме.
Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных
В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.
Отправка торгового сигнала через RSS канал
В данной статье описывается отправка торговых сигналов через RSS канал, как один из популярных способов мгновенного общения с членами Вашего сообщества.
Движение цены: Математические модели и технический анализ
Прогнозирование движений валютных пар является важным фактором успеха в трейдинге. Данная статья посвящена исследованию различных моделей движения цены, анализу их преимуществ и недостатков, а также практическому применению в торговых стратегиях. Мы рассмотрим подходы, позволяющие выявлять скрытые закономерности и повышать точность прогнозов.
Python + API LLM + MetaTrader 5: реальный опыт построения автономного торгового бота
Статья описывает создание MVP-прототипа автономного торгового бота для MetaTrader 5, использующего большие языковые модели (LLM) через API OpenRouter для анализа рынка и принятия торговых решений. Скрипт на Python получает исторические данные OHLCV, отправляет их в LLM для технического анализа на основе уровней поддержки/сопротивления и паттернов Price Action, после чего автоматически размещает ордера с заданными стоп-лоссом и тейк-профитом.
Разметка данных в анализе временных рядов (Часть 3):Пример использования разметки данных
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Разработка торгового советника с нуля (Часть 13): Время и торговля (II)
Сегодня мы построим вторую часть системы Times & Trade для анализа рынка. В предыдущей статье "Times & Trade (I)" мы рассмотрели альтернативную систему для организации графика, чтобы у нас был индикатор, позволяющий как можно быстрее интерпретировать сделки, совершенные на рынке.
Прогнозирование с помощью моделей ARIMA в MQL5
В этой статье мы продолжаем разработку класса CArima для построения моделей ARIMA, добавляя интуитивно понятные методы прогнозирования.
Машинное обучение и Data Science (Часть 16): Свежий взгляд на деревья решений
В последней части нашей серии о машинном обучении и работе с большими данными мы снова возвращаемся к деревьям решений. Эта статья предназначена для трейдеров, которые хотят понять роль деревьев решений в анализе рыночных тенденций. В ней собрана вся основная информация о структуре, предназначении и использовании таких деревьев. Мы рассмотри корни и ветви алгоритмических деревьев и узнаем, в чем же заключается их потенциал применительно к принятию торговых решений. Давайте вместе по-новому взглянем на деревья решений и посмотри, как они могут помочь преодолевать сложности на финансовых рынках.
Возможности Мастера MQL5, которые вам нужно знать (Часть 02): Карты Кохонена
Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.
Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть I): Перемещаемый интерфейс (I)
Раскройте всю мощь динамического представления данных в своих торговых стратегиях или утилитах с помощью нашего подробного руководства по разработке перемещаемого графического интерфейса в MQL5. Погрузитесь в события графика и узнайте, как спроектировать и реализовать простой и множественный перемещаемый графический интерфейс на одном графике. В статье также рассматриваются добавление элементов в графический интерфейс, повышение их функциональности и эстетической привлекательности.
Нейросети — это просто (Часть 61): Проблема оптимизма в офлайн обучении с подкреплением
В процессе офлайн обучения мы оптимизируем политику Агента по данным обучающей выборки. Полученная стратегия придает Агенту уверенность в его действиях. Однако такой оптимизм не всегда оправдан и может привести к увеличению рисков в процессе эксплуатации модели. Сегодня мы рассмотрим один из методов снижения этих рисков.
Нейросети в трейдинге: Анализ облака точек (PointNet)
Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.
Визуализации сделок на графике (Часть 2): Графическая отрисовка информации
Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке, с возможностью прорисовывания разных тайм-фреймов.
Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть III): Простой перемещаемый торговый интерфейс
В этой серии статей мы исследуем интеграцию интерактивных графических интерфейсов в перемещаемые торговые панели на MQL5. В третьей части мы используем наработки из предыдущих частей, чтобы превратить статические торговые панели в динамические.
Своп-арбитраж на Форекс: Собираем синтетический портфель и создаем стабильный своп-поток
Хотите узнать, как извлекать выгоду из разницы в процентных ставках? В статье мы посмотрим, как использовать своп-арбитраж на Форексе, чтобы каждую ночь получать стабильный доход, создавая портфель, устойчивый к рыночным колебаниям.
Циклы и Forex
Циклы имеют большое значение в нашей жизни. День и ночь, времена года, дни недели и множество других циклов разного характера и разной природы присутствуют в жизни любого человека. В этой статье мы попробуем рассмотреть циклы на финансовых рынках.
Создание самооптимизирующихся советников на MQL5
Создавайте советников, которые адаптируются к любому рынку.
Несколько индикаторов на графике (Часть 04): Начинаем работу с советником
В предыдущих статьях я рассказывал, как создать индикатор с несколькими подокнами — такая возможность становится интересной при использовании пользовательских индикаторов. В этот раз мы рассмотрим, как добавить несколько окон в советник.
Исследуем регрессионные модели для причинно-следственного вывода и трейдинга
В данной статье проведено исследование на тему возможности применения регрессионных моделей в алгоритмической торговле. Регрессионные модели, в отличие от бинарной классификации, дают возможность создавать более гибкие торговые стратегии за счет количественной оценки прогнозируемых ценовых изменений.
Несколько индикаторов на графике (Часть 06): Превращаем MetaTrader 5 в систему RAD (II)
В предыдущей статье я показал, как создать Chart Trade с использованием объектов MetaTrader 5 и превратить платформу в систему RAD. Система работает очень хорошо, и наверняка многие задумывались о создании библиотеки — она позволит иметь всё больше и больше функциональности в предлагаемой системе, и можно будет разработать более интуитивно понятный советник с более приятный и простым в использовании интерфейсом.
Возможности Мастера MQL5, которые вам нужно знать (Часть 3): Энтропия Шеннона
Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера.
Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".
Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях
В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.
Как легко и просто опубликовать видео на MQL4.community
Показать обычно легче, чем рассказать. Предлагается простой и бесплатный способ создания видеороликов с помощью CamStudio для публикации на форумах MQL4.community.
Разработка пользовательского канала Дончиана с помощью MQL5
Существует множество технических инструментов, которые можно использовать для визуализации ценового канала. Одним из таких инструментов является канал Дончиана (Donchian Channel). В этой статье мы узнаем, как создать канал Дончиана и как использовать его в качестве пользовательского индикатора в составе советника.
Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.
DoEasy. Элементы управления (Часть 31): Прокрутка содержимого элемента управления "ScrollBar"
В статье создадим функционал прокрутки содержимого контейнера кнопками горизонтальной полосы прокрутки.
Алгоритмическая торговля с MetaTrader 5 и R для начинающих
В статье мы объединим финансовый анализ с алгоритмической торговлей, а также посмотрим, как можно подружить R и MetaTrader 5. Эта статья — руководство по объединению аналитической гибкости R с огромными торговыми возможностями MetaTrader 5.
Нейросети — это просто (Часть 43): Освоение навыков без функции вознаграждения
Проблема обучения с подкреплением заключается в необходимости определения функции вознаграждения, которая может быть сложной или затруднительной для формализации, и для решения этой проблемы исследуются подходы, основанные на разнообразии действий и исследовании окружения, которые позволяют обучаться навыкам без явной функции вознаграждения.
Нейросети — это просто (Часть 80): Генеративно-состязательная модель Трансформера графов (GTGAN)
В данной статье я предлагаю Вам познакомиться с алгоритмом GTGAN, который был представлен в январе 2024 года для решения сложных задач по созданию архитектурного макета с ограничениями на граф.
Разработка торгового советника с нуля (Часть 9): Концептуальный скачок (II)
Размещение Chart Trade в плавающем окне. В предыдущей статье мы создали базовую систему для использования шаблонов внутри плавающего окна.
Квантовые вычисления и трейдинг: Новый взгляд на прогнозы цен
В статье рассматривается инновационный подход к прогнозированию движения цен на финансовых рынках с использованием квантовых вычислений. Основное внимание уделяется применению алгоритма квантовой оценки фазы (QPE) для поиска продобразов ценовых паттернов, что позволяет значительно ускорить процесс анализа рыночных данных.
Машинное обучение и Data Science (Часть 24): Прогнозирование временных рядов на форексе с помощью обычных ИИ-моделей
На валютном рынке сложно предсказать будущие тренды, не имея представления о прошлом. Очень немногие модели машинного обучения способны делать прогнозы на будущее, учитывая прошлые значения. В этой статье мы посмотрим, как можно использовать классические (не временные ряды) модели искусственного интеллекта, чтобы понять рынок.
Нейросети — это просто (Часть 86): U-образный Трансформер
Мы продолжаем рассмотрение алгоритмов прогнозирования временных рядов. И в данной статье я предлагаю Вам познакомиться с методов U-shaped Transformer.
Реализация фактора Януса в MQL5
Гэри Андерсон разработал метод анализа рынка, основанный на теории, которую он назвал фактором Януса. Теория описывает набор индикаторов, которые можно использовать для выявления тенденций и оценки рыночного риска. В этой статье мы реализуем эти инструменты в MQL5.
Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления
В этой статье мы продолжаем знакомиться с языком программирования MQL5. Данная серия статей — не просто учебный материал пособия, это двери в мир программирования. Что делает их особенными? Я постарался в объяснениях сохранять простоту изложения, чтобы сделать сложные концепции доступными для всех. При всей доступности материала, для наилучшего результата вам нужно активно воспроизводить все, о чем мы будем говорить. Только в этом случае вы получите максимальную выгоду от данных статей.
Нейросети — это просто (Часть 87): Сегментация временных рядов
Прогнозирование играет важную роль в анализе временных рядов. В новой статье мы поговорим о преимуществах сегментации временных рядов.
Применение теории игр в алгоритмах трейдинга
Создаем адаптивный самообучающийся торговый советник на основе машинного обучения DQN, с многомерным причинно-следственным выводом, который будет успешно торговать одновременно на 7 валютных парах, причем агенты разных пар будут обмениваться друг с другом информацией.