Сделайте торговые графики лучше с интерактивным графическим интерфейсом на основе MQL5 (Часть III): Простой перемещаемый торговый интерфейс
В этой серии статей мы исследуем интеграцию интерактивных графических интерфейсов в перемещаемые торговые панели на MQL5. В третьей части мы используем наработки из предыдущих частей, чтобы превратить статические торговые панели в динамические.
Визуализации сделок на графике (Часть 2): Графическая отрисовка информации
Пишем с нуля скрипт, который сделает удобным выгрузку принт-скринов сделок для анализа торговых входов. На одном графике будет удобно отображаться вся необходимая информация по отдельной сделке, с возможностью прорисовывания разных тайм-фреймов.
Как легко и просто опубликовать видео на MQL4.community
Показать обычно легче, чем рассказать. Предлагается простой и бесплатный способ создания видеороликов с помощью CamStudio для публикации на форумах MQL4.community.
Возможности Мастера MQL5, которые вам нужно знать (Часть 02): Карты Кохонена
Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.
Выявление и классификация фрактальных паттернов посредством машинного обучения
В этой статье мы затронем интригующую тему фрактального анализа и прогнозирования рынков посредством машинного обучения. Это только первые шаги на пути к исследованию многообразных фрактальных структур, которые образуются на графиках финансовых котировок. Мы используем корреляцию для поиска паттернов и алгоритм CatBoost для классификации этих паттернов.
Несколько индикаторов на графике (Часть 04): Начинаем работу с советником
В предыдущих статьях я рассказывал, как создать индикатор с несколькими подокнами — такая возможность становится интересной при использовании пользовательских индикаторов. В этот раз мы рассмотрим, как добавить несколько окон в советник.
Нейросети — это просто (Часть 77): Кросс-ковариационный Трансформер (XCiT)
В своих моделях мы часто используем различные алгоритмы внимание. И, наверное, чаще всего мы используем Трансформеры. Основным их недостатком является требование к ресурсам. В данной статье я хочу предложить Вам познакомиться с алгоритмом, который поможет снизить затраты на вычисления без потери качества.
Индикатор прогноза волатильности при помощи Python
Прогнозируем будущую экстремальную волатильность при помощи бинарной классификации. Создаем индикатор прогноза экстремальной волатильности с использованием машинного обучения.
Машинное обучение и Data Science (Часть 16): Свежий взгляд на деревья решений
В последней части нашей серии о машинном обучении и работе с большими данными мы снова возвращаемся к деревьям решений. Эта статья предназначена для трейдеров, которые хотят понять роль деревьев решений в анализе рыночных тенденций. В ней собрана вся основная информация о структуре, предназначении и использовании таких деревьев. Мы рассмотри корни и ветви алгоритмических деревьев и узнаем, в чем же заключается их потенциал применительно к принятию торговых решений. Давайте вместе по-новому взглянем на деревья решений и посмотри, как они могут помочь преодолевать сложности на финансовых рынках.
Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.
Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Нейросети в трейдинге: Анализ облака точек (PointNet)
Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.
Реализация фактора Януса в MQL5
Гэри Андерсон разработал метод анализа рынка, основанный на теории, которую он назвал фактором Януса. Теория описывает набор индикаторов, которые можно использовать для выявления тенденций и оценки рыночного риска. В этой статье мы реализуем эти инструменты в MQL5.
Разметка данных в анализе временных рядов (Часть 3):Пример использования разметки данных
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5
Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.
Нейросети — это просто (Часть 43): Освоение навыков без функции вознаграждения
Проблема обучения с подкреплением заключается в необходимости определения функции вознаграждения, которая может быть сложной или затруднительной для формализации, и для решения этой проблемы исследуются подходы, основанные на разнообразии действий и исследовании окружения, которые позволяют обучаться навыкам без явной функции вознаграждения.
Создание самооптимизирующихся советников на MQL5
Создавайте советников, которые адаптируются к любому рынку.
Нейросети — это просто (Часть 80): Генеративно-состязательная модель Трансформера графов (GTGAN)
В данной статье я предлагаю Вам познакомиться с алгоритмом GTGAN, который был представлен в январе 2024 года для решения сложных задач по созданию архитектурного макета с ограничениями на граф.
Обучение многослойного персептрона с помощью алгоритма Левенберга-Марквардта
В статье представлена реализация алгоритма Левенберга-Марквардта для обучения нейронных сетей прямого распространения. Проведен сравнительный анализ результативности с алгоритмами из библиотеки scikit-learn Python. Предварительно обсуждаются более простые методы обучения такие как градиентный спуск, градиентный спуск с импульсом и стохастический градиентный спуск.
DoEasy. Элементы управления (Часть 31): Прокрутка содержимого элемента управления "ScrollBar"
В статье создадим функционал прокрутки содержимого контейнера кнопками горизонтальной полосы прокрутки.
Возможности Мастера MQL5, которые вам нужно знать (Часть 3): Энтропия Шеннона
Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера.
Разработка торгового советника с нуля (Часть 9): Концептуальный скачок (II)
Размещение Chart Trade в плавающем окне. В предыдущей статье мы создали базовую систему для использования шаблонов внутри плавающего окна.
Разработка торгового советника с нуля (Часть 19): Новая система ордеров (II)
В данной статье мы будем разрабатывать графическую систему ордеров вида «посмотрите, что происходит». Следует сказать, что мы не начнем с нуля, а модифицируем существующую систему, добавив еще больше объектов и событий на график торгуемого нами актива.
Алгорим оптимизации химическими реакциями — Chemical reaction optimisation, CRO (Часть I): Химия процессов в оптимизации
В первой части данной статьи мы окунемся в мир химических реакций и откроем новый подход к оптимизации! Метод оптимизации химическими реакциями (CRO) использует для достижения эффективных результатов принципы, определяемые законами термодинамики. Мы раскроем секреты декомпозиции, синтеза и других химических процессов, которые стали основой этого инновационного метода.
DoEasy. Элементы управления (Часть 8): Базовые WinForms-объекты по категориям, элементы управления "GroupBox" и "CheckBox"
В статье рассмотрим создание WinForms-объектов "GroupBox" и "CheckBox", а также создадим базовые объекты для категорий WinForms-объектов. Все создаваемые объекты пока у нас статические, т.е. не имеют функционала интерактивного взаимодействия с мышкой.
DoEasy. Элементы управления (Часть 4): Элемент управления "Панель", параметры Padding и Dock
В статье реализуем работу таких параметров панели как Padding (внутренние отступы/поля со всех сторон элемента) и Dock (способ расположения объекта внутри контейнера).
Теория категорий в MQL5 (Часть 2)
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
Циклы и Forex
Циклы имеют большое значение в нашей жизни. День и ночь, времена года, дни недели и множество других циклов разного характера и разной природы присутствуют в жизни любого человека. В этой статье мы попробуем рассмотреть циклы на финансовых рынках.
Движение цены: Математические модели и технический анализ
Прогнозирование движений валютных пар является важным фактором успеха в трейдинге. Данная статья посвящена исследованию различных моделей движения цены, анализу их преимуществ и недостатков, а также практическому применению в торговых стратегиях. Мы рассмотрим подходы, позволяющие выявлять скрытые закономерности и повышать точность прогнозов.
Разработка торгового советника с нуля (Часть 24): Обеспечиваем надежность системы (I)
В этой статье мы сделаем систему более надежной, чтобы обеспечить более стабильное и безопасное использование. Один из способов достижения нужной надежности — постараться как можно больше повторно использовать код, чтобы он постоянно проверялся в разных ситуациях. Однако, это только один из путей, а другой — использование ООП.
Разработка пользовательского канала Дончиана с помощью MQL5
Существует множество технических инструментов, которые можно использовать для визуализации ценового канала. Одним из таких инструментов является канал Дончиана (Donchian Channel). В этой статье мы узнаем, как создать канал Дончиана и как использовать его в качестве пользовательского индикатора в составе советника.
DoEasy. Сервисные функции (Часть 2): Паттерн "Внутренний бар"
В статье продолжим рассматривать ценовые паттерны в библиотеке DoEasy. Создадим класс паттерна "Внутренний бар" формаций Price Action.
Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки
В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.
Рецепты MQL5 — База данных макроэкономических событий
В статье рассматриваются возможности работы с базами данных на основе движка SQLite. Для удобства и эффективного использования принципов ООП сформирован класс CDatabase. Он в последующем задействуется при создании и управлении базой данных макроэкономических событий. Приводятся примеры использования многих методов класса CDatabase.
Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа
В статье создадим список для хранения тиковых данных одного символа и проверим его создание и получение из него требуемых данных в советнике. Такие списки тиковых данных — свой для каждого используемого символа — далее будут составлять собою коллекцию тиковых данных.
Как построить советник, работающий автоматически (Часть 15): Автоматизация (VII)
Чтобы завершить этот цикл статей об автоматизации, мы дополним то, что рассмотрели в предыдущей статье. Это определенно показывает, как всё будет сочетаться друг с другом, заставляя советника работать как часы.
Разработка торгового советника с нуля (Часть 11): Система кросс-ордеров
Создание системы кросс-ордеров. Есть один вид активов, который очень усложняет жизнь трейдерам — это активы фьючерсных контрактов. Но почему они усложняют жизнь трейдеру?
Нейросети — это просто (Часть 86): U-образный Трансформер
Мы продолжаем рассмотрение алгоритмов прогнозирования временных рядов. И в данной статье я предлагаю Вам познакомиться с методов U-shaped Transformer.
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов
Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.
Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II
Первая часть статьи была посвящена известному и популярному алгоритму - имитации отжига, были рассмотрены его достоинства и подробно описаны недостатки. Вторая часть статьи посвящена кардинальному преобразованию алгоритма, его перерождению в новый алгоритм оптимизации "имитации изотропного отжига, SIA".