

Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен
В статье создадим два класса - класс объекта-снимка стакана цен и класс объекта-серии снимков стакана цен и протестируем создание серии данных стакана цен.


Прочие классы в библиотеке DoEasy (Часть 71): События коллекции объектов-чартов
В статье создадим функционал отслеживания некоторых событий объектов-чартов — добавление и удаление графиков символов, добавление и удаление подокон на график, а также добавление/удаление/изменение индикаторов в окнах чартов.


Работа с таймсериями в библиотеке DoEasy (Часть 40): Индикаторы на основе библиотеки - реалтайм обновление данных
В статье рассмотрим создание простого мультипериодного индикатора на основе библиотеки DoEasy. Доработаем классы таймсерий для получения данных с любых таймфреймов для отображения их на текущем периоде графика.

Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова
Цепи Маркова — это мощный математический инструмент, который можно использовать для моделирования и прогнозирования данных временных рядов в различных областях, включая финансы. При моделировании и прогнозировании финансовых временных рядов цепи Маркова часто используются для моделирования эволюции финансовых активов с течением времени, таких как цены акций или обменные курсы. Одними из основных преимуществ моделей цепей Маркова являются их простота и удобство использования.


Графика в библиотеке DoEasy (Часть 89): Программное создание стандартных графических объектов. Базовый функционал
Наша библиотека теперь умеет отслеживать появление на графике клиентского терминала стандартных графических объектов, их удаление и модификацию некоторых их параметров. Но для полного "комплекта" нам, конечно же, не хватает возможности создавать стандартные графические объекты из своих программ.

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)
В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)
Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.

Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)
Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)
Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.

Работа с матрицами и векторами в MQL5
Для решения математических задач в MQL5 были добавлены матрицы и векторы. Новые типы имеют встроенные методы для написания краткого и понятного кода, который близок к математической записи. Массивы — это хорошо, но матрицы во многих случаях лучше.

WebSocket для MetaTrader 5 — Использование Windows API
В этой статье мы используем WinHttp.dll, чтобы создать клиент WebSocket для MetaTrader 5-программ. В конечном итоге клиент должен быть выполнен в виде класса и протестирован во взаимодействии с WebSocket API от Binary.com.


Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика
В статье продолжим разрабатывать класс объекта-чарта. Добавим к нему список объектов-окон графика, в которых в свою очередь будут доступны списки индикаторов, размещённых в них.


Графика в библиотеке DoEasy (Часть 92): Класс памяти стандартных графических объектов. История изменения свойств объекта
В статье создадим класс памяти стандартного графического объекта, позволяющий объекту сохранять свои состояния при модификации его свойств, что в свою очередь позволит в любое время вернуться к прошлым состояниям графического объекта.

Алгоритм докупки: математическая модель увеличения эффективности
В данной статье мы будем использовать алгоритм докупки, как путеводитель в мир более глубокого понимания эффективности торговых систем и начнем работать над общими принципами усиления эффективности торговли с помощью математики и логики а также применим самые нестандартные методы увеличения эффективности в контексте использования абсолютно любой торговой системы.


Фильтр на основании истории торговли
В статье рассматривается использование виртуальной торговли, как составной части фильтра открытия сделок.

Изучаем индикатор рыночного профиля — Market Profile: Что это и как устроен?
Сегодня познакомимся с "Профилем рынка". Узнаем что лежит за этим названием, попробуем разобраться в принципах работы с Профилем и рассмотрим представленную в терминале его версию под названием MarketProfile.


Работа с таймсериями в библиотеке DoEasy (Часть 38): Коллекция таймсерий - реалтайм обновление и доступ к данным из программы
В статье рассмотрим реалтайм-обновление данных таймсерий и отправку сообщений о событии "Новый бар" на график управляющей программы от всех таймсерий всех символов для возможности обработки этих событий в своих программах. Для определения необходимости обновления таймсерий для нетекущих символа и периодов графика будем использовать класс "Новый тик".

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)
Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.


Консультант-советник трейдера на основе расширенного анализа MACD
Скрипт консультант-советник трейдера по принятию решения об открытии позиций на основании расширенного анализа состояния MACD по трем последним барам в реальном времени торгов на любом периоде, и для проведения анализа на истории.

Машинное обучение и Data Science (Часть 03): Матричная регрессия
В этот раз мы будем создавать модели с помощью матриц — они дают большую гибкость и позволяют создавать мощные модели, которые могут обрабатывать не только пять независимых переменных, но и множество других, насколько позволяют пределы вычислительных возможностей компьютера. Статья будет очень интересной, это точно.


Интервью с Борисом Одинцовым (ATC 2010)
Борис Одинцов - один из самых ярких участников Чемпионата, преодолевший на третьей торговой неделе планку в $100 000. Стремительный взлет своего эксперта Борис объясняет благоприятным стечением обстоятельств. В этом интервью он рассказывает, каким вещам стоит уделять внимание в трейдинге и о том, какой рынок неблагоприятен для его эксперта.

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей
Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.


Видео: Настройка MetaTrader 5 и MQL5 для простой автоматизированной торговли
В этом небольшом видеокурсе вы узнаете, как скачать, установить и настроить MetaTrader 5 для автоматизированной торговли. Вы также узнаете, как настроить график и параметры автоматизированной торговли. Вы проведете свое первое тестирование на истории и узнаете, как импортировать советника, который может самостоятельно торговать 24 часа в сутки 7 дней в неделю, избавляя вас от необходимости сидеть перед экраном.


Графика в библиотеке DoEasy (Часть 86): Коллекция графических объектов - контролируем модификацию свойств
В статье рассмотрим отслеживание модификации значений свойств, удаление и переименование графических объектов в библиотеке.


Александр Ануфренко: "Знал бы, где упасть - перинку бы подстелил" (ATC 2010)
Рискованная разработка Александра Ануфренко (Anufrenko321) в течение трех недель не покидала первую тройку Чемпионата. Пережив на прошлой неделе чудовищный стоп-лосс, эксперт потерял около $60 000, но сейчас вновь подбирается к лидирующим позициям. Автор этого интересного эксперта решил рассказать о принципах работы и особенностях своего детища.


Как стать участником Automated Trading Championship 2008?
Основная цель проведения Чемпионата - популяризация автоматического трейдинга и накопление практической информации в этой области. Как Организатор Чемпионата, мы стремимся обеспечивать честное соревнование и пресекать все попытки мошенничества. Именно этими соображениями продиктованы жесткие Правила Чемпионата.

Разработка торговой системы на основе осциллятора Чайкина
Это новая статья из серии, в которой мы изучаем популярные технические индикаторы и учимся создавать на их основе торговые системы. В этой статье будем работать с индикатором Chaikin Oscillator — Осциллятор Чайкина.

Использование ONNX-моделей в MQL5
ONNX (Open Neural Network Exchange) — открытый стандарт представления моделей нейронных сетей. В данной статье мы рассмотрим процесс создания модели СNN-LSTM для прогнозирования финансовых временных рядов и использование созданной ONNX-модели в MQL5-эксперте.

Нейросети — это просто (Часть 17): Понижение размерности
Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.

Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции
В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.

Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис
Деревья решений классифицируют данные, имитируя то, каким образом размышляют люди. В этой статье посмотрим, как строить деревья и использовать их для классификации и прогнозирования данных. Основная цель алгоритма деревьев решений состоит в том, чтобы разделить выборку на данные с "примесями" и на "чистые" или близкие к узлам.

Управление рисками и капиталом с помощью советников
Эта статья о том, чего вы не найдете в отчете о тестировании, чего следует ожидать при использовании советников, как управлять своими деньгами при использовании роботов и как покрыть значительный убыток, чтобы остаться в трейдинге при автоматизированной торговле.

Показатель склонности (Propensity score) в причинно-следственном выводе
В статье рассматривается тема матчинга в причинно-следственном выводе. Матчинг используется для сопоставления похожих наблюдений в наборе данных. Это необходимо для правильного определения каузальных эффектов, избавления от предвзятости. Автор рассказывает, как это помогает в построении торговых систем на машинном обучении, которые становятся более устойчивыми на новых данных, на которых не обучались. Центральная роль отводится показателю склонности, который широко используется в причинно-следственном выводе.

Нейросети — это просто (Часть 18): Ассоциативные правила
В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.

Разбираем примеры торговых стратегий в клиентском терминале
В статье рассмотрим наглядно по блок-схемам логику прилагаемых к терминалу учебных советников, расположенных в папке Experts\Free Robots, торгующих по свечным паттернам.

Несколько индикаторов на графике (Часть 02): Первые эксперименты
В предыдущей статье "Несколько индикаторов на графике" я представил концепции и основы того, как мы можем использовать несколько индикаторов на графике. В данной статье я представлю и детально объясню исходный код.

Работа с таймсериями в библиотеке DoEasy (Часть 50): Мультипериодные мультисимвольные стандартные индикаторы со смещением
В статье доработаем методы библиотеки для корректного отображения мультисимвольных мультипериодных стандартных индикаторов, линии которых выводятся на график текущего символа со смещением, задаваемым в настройках. А также наведём порядок в методах работы со стандартными индикаторами и уберём в область библиотеки лишний код в итоговой программе-индикаторе.


Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.


Метод выявления ошибок в коде при помощи комментирования
В статье рассказывается о методе поиска ошибок в коде MQL 4, который основан на комментировании. Данный метод бывает очень полезен при возникновения проблем компилирования из-за ошибок в достаточно крупном коде.

Опыт разработки торговой стратегии
В этой статье мы сделаем попытку разработать собственную торговую стратегию. Любая торговая стратегия должна быть построена на основе какого-то статистического преимущества. Причем это преимущество должно существовать в течение долгого времени.