Статьи по программированию на языках MQL4 и MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)

Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)

Это первая часть новой системы ордеров. С тех пор, как мы начали создавать документацию данного советника в наших статьях, он претерпел различные изменения и улучшения, сохраняя при этом ту же модель системы ордеров на графике.
preview
Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)

Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)

Сегодня мы продолжим разработку новой системы ордеров. Внедрить новую систему совсем непросто: мы часто сталкиваемся с проблемами, которые сильно усложняют процесс. Когда эти проблемы появляются, нам приходится останавливаться и заново анализировать направление, по которому мы движемся.
preview
Графики индекса доллара и индекса евро — пример сервиса в MetaTrader 5

Графики индекса доллара и индекса евро — пример сервиса в MetaTrader 5

На примере программы-сервиса рассмотрим создание и обновление графиков индекса доллара (USDX) и индекса евро (EURX). При запуске сервиса будем проверять наличие нужного синтетического инструмента, создавать его при его отсутствии и размещать в окне Обзор рынка. Далее будет создана история синтетического инструмента — минутная и тиковая, и будет открыт график созданного инструмента.
Технический Анализ: невозможное - возможно!
Технический Анализ: невозможное - возможно!

Технический Анализ: невозможное - возможно!

Ответ на вопрос: почему невозможное может быть возможным, когда многое говорит об обратном? Рассуждения о техническом анализе.
preview
Разработка торговой системы на основе индикатора Gator Oscillator

Разработка торговой системы на основе индикатора Gator Oscillator

Представляю вашему вниманию новую статью из серии, в которой мы учимся строить торговые системы на основе самых популярных индикаторов. На этот раз мы поговорим об индикаторе Gator Oscillator и создадим торговую систему по простым стратегиям.
preview
Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника

Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника

Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.
preview
Машинное обучение и Data Science (Часть 23): Почему LightGBM и XGBoost лучше многих ИИ-моделей?

Машинное обучение и Data Science (Часть 23): Почему LightGBM и XGBoost лучше многих ИИ-моделей?

LightGBM и XGBoost — продвинутые методы построения деревьев решений с использованием градиентного бустинга, они обеспечивают превосходную производительность и гибкость, что делает их идеальными для финансового моделирования и алгоритмической торговли. В этой статье мы поговорим о том, как использовать эти инструменты для оптимизации торговых стратегий, повышения точности прогнозов и получения выгоды на финансовых рынках.
preview
Оценка ONNX-моделей при помощи регрессионных метрик

Оценка ONNX-моделей при помощи регрессионных метрик

Регрессия – это задача предсказания вещественной величины по непомеченному примеру. Для оценки точности предсказаний регрессионных моделей предназначены так называемые метрики регрессии.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.
preview
Понимание и эффективное использование тестера стратегий MQL5

Понимание и эффективное использование тестера стратегий MQL5

MQL5-разработчикам крайне необходимо освоить важные и ценные инструменты. Одним из таких инструментов является тестер стратегий. Статья представляет собой практическое руководство по использованию тестера стратегий MQL5.
preview
Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Матрица служит основой алгоритмов машинного обучения и компьютеров в целом из-за ее способности эффективно обрабатывать большие математические операции. В Стандартной библиотеке есть все, что нужно, но мы можем расширить ее, добавив несколько функций в файл utils.
preview
Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.
preview
Простое создание сложных индикаторов с помощью объектов

Простое создание сложных индикаторов с помощью объектов

В статье представлен метод создания сложных индикаторов, позволяющий избежать проблем при работе с несколькими графиками и буферами, а также при объединении данных из нескольких источников.
preview
Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

Нейросети — это просто (Часть 62): Использование Трансформера решений в иерархических моделях

В последних статьях мы познакомились с несколькими вариантами использования метода Decision Transformer. Который позволяет анализировать не только текущее состояние, но и траекторию предшествующих состояний и, совершенных в них, действий. В данной статье я предлагаю Вам познакомиться с вариантом использования данного метода в иерархических моделях.
preview
Создавать графические панели в MQL5 стало проще

Создавать графические панели в MQL5 стало проще

В этой статье мы предоставим простое и понятное руководство для всех, кто хочет создать один из самых ценных и полезных инструментов в трейдинге — графическую панель, упрощающую выполнение торговых задач. Графические панели позволяют сэкономить время и больше сосредоточиться на самой торговле.
preview
Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM

Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM

Статья посвящена разработке модели глубокого обучения GRU ONNX на Python. В практической части мы реализуем эту модель в торговом советнике, а затем сравним работу модели GRU с LSTM (долгой краткосрочной памятью).
preview
Разрабатываем мультивалютный советник (Часть 9): Сбор результатов оптимизации одиночных экземпляров торговой стратегии

Разрабатываем мультивалютный советник (Часть 9): Сбор результатов оптимизации одиночных экземпляров торговой стратегии

Наметим основные этапы по разработке нашего советника. Одним из первых будет проведение оптимизации одиночного экземпляра разработанной торговой стратегии. Попробуем собрать в одном месте всю необходимую информацию о проходах тестера при оптимизации.
preview
Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.
Графика в библиотеке DoEasy (Часть 87): Коллекция графических объектов - контроль модификации свойств объектов на всех открытых графиках
Графика в библиотеке DoEasy (Часть 87): Коллекция графических объектов - контроль модификации свойств объектов на всех открытых графиках

Графика в библиотеке DoEasy (Часть 87): Коллекция графических объектов - контроль модификации свойств объектов на всех открытых графиках

В статье продолжим работу над отслеживанием событий стандартных графических объектов и создадим функционал, позволяющий контролировать изменение свойств графических объектов, расположенных на любых открытых в терминале графиках.
preview
Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Удивительная способность сорняков выживать в самых разнообразных условиях послужило идеей создания мощного алгоритма оптимизации. IWO — один из лучших среди рассмотренных ранее.
preview
Разработка пользовательского индикатора True Strength Index с помощью MQL5

Разработка пользовательского индикатора True Strength Index с помощью MQL5

Представляю новую статью о том, как создать пользовательский индикатор. На этот раз мы будем работать с индексом истинной силы - True Strength Index (TSI) и создадим советник на его основе.
preview
Количественный анализ на MQL5: реализуем перспективный алгоритм

Количественный анализ на MQL5: реализуем перспективный алгоритм

Разбираем вопрос, что такое количественный анализ, как его применяют крупные игроки, создадим один из алгоритмов количественного анализа на языке MQL5.
preview
Модель движения цены и ее основные положения (Часть 2):  Уравнение эволюции вероятностного поля цены и возникновение наблюдаемого случайного блуждания

Модель движения цены и ее основные положения (Часть 2): Уравнение эволюции вероятностного поля цены и возникновение наблюдаемого случайного блуждания

Выведено уравнение эволюции вероятностного поля цены, найден критерий приближения ценового скачка, раскрыты суть ценовых значений на графиках котировок и механизм возникновения случайного блуждания этих значений.
preview
DoEasy. Элементы управления (Часть 2): Продолжаем работу над классом CPanel

DoEasy. Элементы управления (Часть 2): Продолжаем работу над классом CPanel

В статье избавимся от некоторых ошибок при работе с графическими элементами и продолжим разработку элемента управления CPanel. Это будут методы для установки параметров шрифта, который используется по умолчанию для всех текстовых объектов панели, которые в свою очередь могут быть на ней расположены в дальнейшем.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Основа стратегии поиска пищи бактерией E.coli (кишечная палочка) вдохновила ученых на создание алгоритма оптимизации BFO. Алгоритм содержит оригинальные идеи и перспективные подходы к оптимизации и достоин дальнейшего изучения.
preview
Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.
preview
Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.
preview
Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

Нейросети — это просто (Часть 71): Прогнозирование будущих состояний с учетом поставленных целей (GCPC)

В предыдущих работах мы познакомились с методом Decision Transformer и несколькими производными от него алгоритмами. Мы экспериментировали с различными методами постановки цели. В процессе экспериментов мы работали с различными способами постановки целей, однако изучение моделью уже пройденной траектории всегда оставалось вне нашего внимания. В данной статье я хочу познакомить Вас с методом, который заполняет этот пробел.
preview
Разработка торгового советника с нуля (Часть 25): Обеспечиваем надежность системы (II)

Разработка торгового советника с нуля (Часть 25): Обеспечиваем надежность системы (II)

В этой статье мы сделаем финальный рывок к производительности советника... так что будьте готовы к долгому чтению. Чтобы сделать наш советник надежным, мы сначала удалим из кода всё, что не является частью торговой системы.
preview
Эконометрические инструменты для прогнозирования волатильности: Модель GARCH

Эконометрические инструменты для прогнозирования волатильности: Модель GARCH

В статье дается описание свойств нелинейной модели условной гетероскедастичности(GARCH). На ее основе построен индикатор iGARCH для прогнозирования волатильности на один шаг вперед. Для оценки параметров модели используется библиотека численного анализа ALGLIB.
preview
Теория категорий в MQL5 (Часть 1)

Теория категорий в MQL5 (Часть 1)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX

Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.
preview
Освоение ONNX: Переломный момент для MQL5-трейдеров

Освоение ONNX: Переломный момент для MQL5-трейдеров

Погрузитесь в мир ONNX - мощного открытого формата для обмена моделями машинного обучения. Узнайте, как использование ONNX может произвести революцию в алгоритмической торговле на MQL5, позволяя трейдерам беспрепятственно интегрировать передовые модели искусственного интеллекта и поднять свои стратегии на новый уровень. Раскройте секреты кросс-платформенной совместимости и узнайте, как раскрыть весь потенциал ONNX в своей торговле на MQL5. Улучшите свою торговлю с помощью этого подробного руководства по ONNX.
preview
Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Нейросети — это просто (Часть 63): Предварительное обучение Трансформера решений без учителя (PDT)

Продолжаем рассмотрение семейства методов Трансформера решений. Из предыдущих работ мы уже заметили, что обучение трансформера, лежащего в основе архитектуры данных методов, довольно сложная задача и требует большого количества размеченных обучающих данных. В данной статье мы рассмотрим алгоритм использования не размеченных траекторий для предварительного обучения моделей.
preview
Анализ циклов с использованием алгоритма Гёрцеля

Анализ циклов с использованием алгоритма Гёрцеля

В статье представлены утилиты, реализующие алгоритм Гёрцеля в MQL5 и два способа применения этого метода при анализе ценовых котировок для разработки стратегии.
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5
Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Видео: Простая автоматизированная торговля – Как создать простой торговый советник с помощью MQL5

Большинство слушателей моих курсов считали, что язык MQL5 сложен для понимания. Кроме того, они искали простые способы автоматизации некоторых процессов. В этой статье вы узнаете как сходу начать работать в MQL5 даже без навыков программирования и даже если в прошлом у вас уже были неудачные попытки освоить эту тему.
preview
Создаем 3D-бары на основе времени, цены и объема

Создаем 3D-бары на основе времени, цены и объема

Что такое многомерные 3D-графики цен и как они создаются. Как 3D-бары предсказывают развороты цены, и как Python и MetaTrader 5 позволяют строить эти объемные бары в режиме реального времени.
preview
Машинное обучение и Data Science (Часть 17): Растут ли деньги на деревьях? Случайные леса в форекс-трейдинге

Машинное обучение и Data Science (Часть 17): Растут ли деньги на деревьях? Случайные леса в форекс-трейдинге

Эта статья познакомит вас с секретами алгоритмической алхимии, познакомит с искусством и точностью особенностей финансовых ландшафтов. Вы узнаете, как случайные леса преобразуют данные в прогнозы и помогают ориентироваться в сложностях финансовых рынков. Мы постараемся определить роль случайных лесов в отношении финансовых данных и проверить, смогут ли они помочь увеличить прибыль.
Моделирование реквотов на тестере и анализ устойчивости советника
Моделирование реквотов на тестере и анализ устойчивости советника

Моделирование реквотов на тестере и анализ устойчивости советника

Requote - бич для многих экспертов в особенности тех, у кого достаточно чувствительные условия входа и выхода из сделки. В статье предлагается один из способов проверить эксперт на устойчивость от реквотов.
preview
Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Нейросети — это просто (Часть 66): Проблематика исследования в офлайн обучении

Обучение моделей в офлайн режиме осуществляется на данных ранее подготовленной обучающей выборки. Это дает нам ряд преимуществ, но при этом информация об окружающей среде сильно сжимается до размеров обучающей выборки. Что, в свою очередь, ограничивает возможности исследования. В данной статье хочу предложить познакомиться с методом, позволяющем наполнить обучающую выборку максимально разнообразными данными.