Популяционные алгоритмы оптимизации: Алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA). Часть II
Первая часть статьи была посвящена известному и популярному алгоритму - имитации отжига, были рассмотрены его достоинства и подробно описаны недостатки. Вторая часть статьи посвящена кардинальному преобразованию алгоритма, его перерождению в новый алгоритм оптимизации "имитации изотропного отжига, SIA".
Популяционные алгоритмы оптимизации: Тасующий алгоритм прыгающих лягушек (Shuffled Frog-Leaping, SFL)
Статья представляет подробное описание алгоритма прыгающих лягушек (SFL) и его возможности в решении задач оптимизации. SFL-алгоритм вдохновлен поведением лягушек в естественной среде и предлагает новый подход к оптимизации функций. SFL-алгоритм является эффективным и гибким инструментом, способным обрабатывать разнообразные типы данных и достигать оптимальных решений.
Треугольные и пилообразные волны: инструменты для трейдера
Одним из методов технического анализа является волновой анализ. В этой статье мы рассмотрим волны несколько необычного вида — треугольные и пилообразные. На основе этих волн можно построить несколько технических индикаторов, с помощью которых можно анализировать движение цены на рынке.
Нейросети в трейдинге: Кусочно-линейное представление временных рядов
Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.
Нейросети — это просто (Часть 87): Сегментация временных рядов
Прогнозирование играет важную роль в анализе временных рядов. В новой статье мы поговорим о преимуществах сегментации временных рядов.
Нейросети — это просто (Часть 78): Детектор объектов на основе Трансформера (DFFT)
В данной статье я предлагаю посмотреть на вопрос построения торговой стратегии с другой стороны. Мы не будем прогнозировать будущее ценовое движение, а попробуем построить торговую систему на основе анализа исторических данных.
Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления
В этой статье мы продолжаем знакомиться с языком программирования MQL5. Данная серия статей — не просто учебный материал пособия, это двери в мир программирования. Что делает их особенными? Я постарался в объяснениях сохранять простоту изложения, чтобы сделать сложные концепции доступными для всех. При всей доступности материала, для наилучшего результата вам нужно активно воспроизводить все, о чем мы будем говорить. Только в этом случае вы получите максимальную выгоду от данных статей.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 5): Полосы Боллинджера на канале Кельтнера — Сигналы индикаторов
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. В этой статье мы будем использовать сигналы двух индикаторов - полосы Боллинджера (Bollinger Bands®) на канале Кельтнера.
Популяционные алгоритмы оптимизации: Алгоритм боидов, или алгоритм стайного поведения (Boids Algorithm, Boids)
В данной статье мы проводим исследование алгоритма Boids, в основе которого лежат уникальные примеры стайного поведения животных. Алгоритм Boids, в свою очередь, послужил основой для создания целого класса алгоритмов, объединенных под названием "Роевый интеллект".
Возможности SQLite в MQL5: Пример интерактивной панели с торговой статистикой в разрезе символов и магиков
В статье рассмотрим создание индикатора, отображающего на интерактивной панели статистику торговли по счёту и в разрезе символов и торговых стратегий. Код напишем, основываясь на примерах из Документации и статьи о работе с базами данных.
Применение теории игр в алгоритмах трейдинга
Создаем адаптивный самообучающийся торговый советник на основе машинного обучения DQN, с многомерным причинно-следственным выводом, который будет успешно торговать одновременно на 7 валютных парах, причем агенты разных пар будут обмениваться друг с другом информацией.
Возможности Мастера MQL5, которые вам нужно знать (Часть 6): Преобразование Фурье
Преобразование Фурье, введенное Жозефом Фурье, является средством разложения сложных волновых точек данных на простые составляющие волны. Эта особенность может быть полезной для трейдеров, и именно ее мы и рассмотрим в этой статье.
Применение теории игр в алгоритмах трейдинга
Создаем адаптивный самообучающийся торговый советник на основе машинного обучения DQN, с многомерным причинно-следственным выводом, который будет успешно торговать одновременно на 7 валютных парах, причем агенты разных пар будут обмениваться друг с другом информацией.
Самообучающийся советник с нейросетью на матрице состояний
Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?
Исследуем регрессионные модели для причинно-следственного вывода и трейдинга
В данной статье проведено исследование на тему возможности применения регрессионных моделей в алгоритмической торговле. Регрессионные модели, в отличие от бинарной классификации, дают возможность создавать более гибкие торговые стратегии за счет количественной оценки прогнозируемых ценовых изменений.
Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях
В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.
Представления частотной области временных рядов: Спектральная функция
В этой статье мы рассмотрим методы, связанные с анализом временных рядов в частотной области. Также будет уделено внимание пользе изучения спектральных функций временных рядов при построении прогностических моделей. Кроме того, мы обсудим некоторые многообещающие перспективы анализа временных рядов в частотной области с использованием дискретного преобразования Фурье (ДПФ).
Нейросети — это просто (Часть 45): Обучение навыков исследования состояний
Обучение полезных навыков без явной функции вознаграждения является одной из основных задач в иерархическом обучении с подкреплением. Ранее мы уже познакомились с 2 алгоритмами решения данной задачи. Но вопрос полноты исследования окружающей среды остается открытым. В данной статье демонстрируется иной подход к обучению навыком. Использование которых напрямую зависит от текущего состояния системы.
Разрабатываем мультивалютный советник (Часть 7): Подбор группы с учётом форвард-периода
Подбор группы экземпляров торговых стратегий с целью улучшения результатов при их совместной работы мы прежде оценивали только на том же временном периоде, на котором проводилась оптимизация отдельных экземпляров. Давайте посмотрим, что получится на форвард-периоде.
Изучение MQL5 — от новичка до профи (Часть III): Сложные типы данных и подключаемые файлы
Статья является третьей в серии материалов об основных аспектах программирования на MQL5. Здесь описываются сложные типы данных, которые не были описаны в предыдущей статье, включая структуры, объединения, классы и тип данных "функция". Также рассказано, как добавить модульности нашей программе с помощью директивы препроцессора #include.
Разрабатываем мультивалютный советник (Часть 6): Автоматизируем подбор группы экземпляров
После оптимизации торговой стратегии мы получаем наборы параметров, на основе которых можно создать несколько экземпляров торговых стратегий, объединённых в одном советнике. Раньше мы делали это вручную, а теперь попробуем автоматизировать этот процесс
DoEasy. Элементы управления (Часть 30): Оживляем элемент управления "ScrollBar"
В статье продолжим разрабатывать элемент управления ScrollBar и начнём делать функционал взаимодействия с мышкой. Помимо этого расширим списки флагов состояния и событий мышки.
Разработка торгового советника с нуля (Часть 8): Концептуальный скачок (I)
Как максимально просто реализовать новый функционал? В данной статье мы сделаем шаг назад, а затем два шага вперед.
Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов
Знаете ли вы, что можно добиться большей точности, прогнозируя определенные технические индикаторы, чем саму цену торгуемого символа? В статье рассматривается, как использовать это знание для разработки более эффективных торговых стратегий.
Нейросети — это просто (Часть 41): Иерархические модели
Статья описывает иерархические модели обучения, которые предлагают эффективный подход к решению сложных задач машинного обучения. Иерархические модели состоят из нескольких уровней, каждый из которых отвечает за различные аспекты задачи.
Добавляем пользовательскую LLM в торгового робота (Часть 1): Развертывание оборудования и среды
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти мощные модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Популяционные алгоритмы оптимизации: Алгоритм оптимизации китов (Whale Optimization Algorithm, WOA)
Алгоритм оптимизации китов (WOA) - это метаэвристический алгоритм, вдохновленный поведением и охотничьими стратегиями горбатых китов. Основная идея WOA заключается в имитации так называемого "пузырькового сетевого" метода кормления, при котором киты создают пузыри вокруг добычи, чтобы затем нападать на нее в спиральном движении.
Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)
Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.
Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования
Разрабатываемый советник должен показывать хорошие результаты при торговле у разных брокеров. Но мы пока что для тестов использовали котировки с демо-счёта от MetaQuotes. Посмотрим, готов ли наш советник к работе на торговом счёте с другими котировками по сравнению с теми, которые использовались при тестировании и оптимизации.
Разработка стратегии Zone Recovery Martingale на MQL5
В статье подробно рассматриваются шаги для создания советника на основе торгового алгоритма Zone Recovery. Это позволяет автоматизировать систему, экономя время алготрейдеров.
Квантовые вычисления и трейдинг: Новый взгляд на прогнозы цен
В статье рассматривается инновационный подход к прогнозированию движения цен на финансовых рынках с использованием квантовых вычислений. Основное внимание уделяется применению алгоритма квантовой оценки фазы (QPE) для поиска продобразов ценовых паттернов, что позволяет значительно ускорить процесс анализа рыночных данных.
Нейросети — это просто (Часть 52): Исследование с оптимизмом и коррекцией распределения
По мере обучения модели на базе буфера воспроизведения опыта текущая политика Актера все больше отдаляется от сохраненных примеров, что снижает эффективность обучения модели в целом. В данной статье мы рассмотрим алгоритм повышения эффективности использования образцов в алгоритмах обучения с подкреплением.
DoEasy. Элементы управления (Часть 26): Дорабатываем WinForms-объект "ToolTip" и начинаем разработку "ProgressBar"
В статье завершим разработку элемента управления ToolTip и начнём разрабатывать WinForms-объект ProgressBar. По мере работы над объектами, разработаем универсальный функционал для оживления элементов управления и их составляющих.
Разработка торгового советника с нуля (Часть 17): Доступ к данным в Интернете (III)
В этой статье мы продолжим с просмотром того, как получать данные из Интернета для их использования в советнике. Давайте приступим к работе, а точнее к кодированию альтернативной системы.
Алгоритмическая торговля с MetaTrader 5 и R для начинающих
В статье мы объединим финансовый анализ с алгоритмической торговлей, а также посмотрим, как можно подружить R и MetaTrader 5. Эта статья — руководство по объединению аналитической гибкости R с огромными торговыми возможностями MetaTrader 5.
Как построить советник, работающий автоматически (Часть 13): Автоматизация (V)
Знаете ли вы, что такое блок-схема? Умеете ли вы ее использовать? Думаете ли вы, что блок-схемы - это дело начинающих программистов? Тогда я вам предлагаю ознакомиться с этой статьей и узнать, как работать с блок-схемами.
Нейросети — это просто (Часть 65): Дистанционно-взвешенное обучение с учителем (DWSL)
В данной статье я предлагаю Вам познакомиться с интересным алгоритмом, который построен на стыке методов обучения с учителем и подкреплением.
Торговая стратегия "Захват ликвидности" (Liquidity Grab)
Торговая стратегия захвата ликвидности является ключевым компонентом Концепции умных денег (Smart Money Concepts (SMC), которая направлена на выявление и использование действий институциональных игроков на рынке. Она предполагает нацеливание на области с высокой ликвидностью, такие как зоны поддержки или сопротивления, где крупные ордера могут спровоцировать движение цены до того, как рынок возобновит свой тренд. В настоящей статье подробно объясняется концепция захвата ликвидности и описывается процесс разработки советника по торговой стратегии захвата ликвидности на MQL5.
Как построить советник, работающий автоматически (Часть 07): Виды счетов (II)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме. Трейдеру всегда необходимо быть в курсе того, что делает автоматический советник, чтобы, если он «сойдет с рельсов», как можно быстрее удалить его с графика, прекратить таким образом его работу, и взять ситуацию под свой контроль.
Изучаем конформное прогнозирование финансовых временных рядов
В этой статье вы познакомитесь с конформными предсказаниями и библиотекой MAPIE, которая их реализует. Данный подход является одним из самых современных в машинном обучении и позволяет сосредоточиться на контроле рисков для уже существующих разнообразных моделей машинного обучения. Конформные предсказания, сами по себе, не являются способом поиска закономерностей в данных. Они лишь определяют степень уверенности существующих моделей в предсказании конкретных примеров и позволяют фильтровать надежные предсказания.