Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
preview
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
preview
Análise causal de séries temporais usando entropia de transferência

Análise causal de séries temporais usando entropia de transferência

Neste artigo, discutimos como a causalidade estatística pode ser aplicada para identificar variáveis preditivas. Exploraremos a relação entre causalidade e entropia de transferência, além de apresentar um código MQL5 para detectar transferências direcionais de informação entre duas variáveis.
preview
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
preview
Simulação de mercado (Parte 09): Sockets (III)

Simulação de mercado (Parte 09): Sockets (III)

Este artigo é continuação do artigo anterior. Aqui vamos ver como o Expert Advisor será implementado. Mas principalmente como deverá ser feito o código do servidor. Isto por que, o código que foi visto no artigo anterior não é o suficiente para que possamos de fato fazer com que as coisas funcionem como deverão. Então é necessário que você veja ambos artigos para compreender mais profundamente o que estará acontecendo.
preview
Abordagem quantitativa na gestão de riscos: aplicação do modelo VaR para otimização de portfólio multimoeda com Python e MetaTrader 5

Abordagem quantitativa na gestão de riscos: aplicação do modelo VaR para otimização de portfólio multimoeda com Python e MetaTrader 5

Neste artigo, revelamos o potencial do modelo Value at Risk (VaR) para a otimização de portfólios multimoeda. Utilizando o Python e as funcionalidades do MetaTrader 5, demonstramos como implementar a análise VaR para uma distribuição eficiente de capital e gerenciamento de posições. Desde os fundamentos teóricos até a implementação prática, o artigo abrange todos os aspectos da aplicação de um dos sistemas mais robustos de cálculo de risco — o VaR — no trading algorítmico.
preview
Simulação de mercado (Parte 08): Sockets (II)

Simulação de mercado (Parte 08): Sockets (II)

Que tal criar algo prático usando soquetes? Bem, neste artigo, vamos iniciar a criação de um mini chat. Acompanhe como isto será feito, pois será algo bastante interessante. Lembre-se que o que será mostrado aqui tem como objetivo ser um código puramente didático. Você de fato não deve usar este código de forma comercial ou em uma aplicação finalizada. Pois o mesmo não conta com nenhum tipo de segurança no transporte dos dados. Sendo possível ver o conteúdo do que está sendo transportado pelo soquete.
preview
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
preview
Simulação de mercado (Parte 07): Sockets (I)

Simulação de mercado (Parte 07): Sockets (I)

Soquetes. Você sabe para que eles servem, ou como fazer uso deles no MetaTrader 5? Se a resposta for não, vamos começar aprendendo um pouco sobre eles. Este artigo aqui envolve o básico do básico. Mas como existem diversas maneiras de se fazer a mesma coisa, e o que nos interessa realmente é sempre o resultado. Queria mostrar que sim, existe uma forma simples, de passar dados do MetaTrader 5 para dentro de outros programas, como por exemplo o Excel. Porém, a principal ideia, não é transferir dados do MetaTrader 5, para o Excel. E sim fazer o contrário. Ou seja, transferir dados do Excel, ou de qualquer outro programa, para dentro do MetaTrader 5.
preview
Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

No artigo anterior, discutimos uma RNN simples que, apesar de sua incapacidade de entender dependências de longo prazo nos dados, conseguiu desenvolver uma estratégia lucrativa. Neste artigo, discutiremos tanto a Memória de Longo e Curto Prazo (LSTM) quanto a Unidade Recorrente com Portões (GRU). Essas duas redes foram introduzidas para superar as limitações de uma RNN simples e superá-la.
preview
Métodos de William Gann (Parte III): A astrologia funciona?

Métodos de William Gann (Parte III): A astrologia funciona?

A posição dos planetas e estrelas influencia os mercados financeiros? Vamos recorrer à estatística e aos big data para embarcar em uma jornada fascinante pelo mundo onde as estrelas e os gráficos do mercado se cruzam.
preview
Ciclos e Forex

Ciclos e Forex

Os ciclos têm grande importância em nossas vidas. Dia e noite, estações do ano, dias da semana e muitos outros ciclos de naturezas diferentes fazem parte do cotidiano de qualquer pessoa. Neste artigo, tentaremos examinar os ciclos nos mercados financeiros.
preview
Simulação de mercado (Parte 06): Transferindo informações do MetraTrader 5 para o Excel

Simulação de mercado (Parte 06): Transferindo informações do MetraTrader 5 para o Excel

Muita gente, principalmente os não programadores, tem muita dificuldade em conseguir transferir informações entre o MetaTrader 5 e outros programas. Um destes programas é o Excel. Muitos usam o Excel como uma forma de gerenciar e manter o seu controle de risco. Sendo um programa muito bom e fácil de aprender a utilizar. Mesmo para quem não é programador VBA. Aqui vou mostrar uma forma de fazer a comunicação entre o MetaTrader 5 e o Excel (Método super-simples).
preview
Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

Algoritmo de otimização da sociedade anárquica — Anarchic society optimization (ASO)

No próximo artigo, conheceremos o algoritmo Anarchic Society Optimization (ASO) e discutiremos como um algoritmo baseado no comportamento irracional e aventureiro dos participantes de uma sociedade anárquica — um sistema anômalo de interação social, livre de autoridade centralizada e de qualquer tipo de hierarquia — é capaz de explorar o espaço de soluções e evitar armadilhas de ótimos locais. O artigo apresentará uma estrutura unificada do ASO, aplicável tanto a problemas contínuos quanto a problemas discretos.
preview
Algoritmo de otimização de migração animal (AMO)

Algoritmo de otimização de migração animal (AMO)

O artigo é dedicado ao algoritmo AMO, que modela o processo de migração sazonal dos animais em busca de condições ideais para sobrevivência e reprodução. As principais características do AMO incluem o uso da vizinhança topológica e um mecanismo probabilístico de atualização, tornando-o simples de implementar e flexível para diversas tarefas de otimização.
preview
Colmeia artificial de abelhas (ABHA): Testes e resultados

Colmeia artificial de abelhas (ABHA): Testes e resultados

Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.
preview
Simulação de mercado (Parte 05): Iniciando a classe C_Orders (II)

Simulação de mercado (Parte 05): Iniciando a classe C_Orders (II)

Neste artigo, explicarei como o Chart Trade conseguirá lidar, junto com o Expert Advisor, a um pedido do usuário para encerrar todas as posições que se encontram em aberto. Parece ser algo simples. Porém existem alguns agravantes que você precisa saber como lidar com eles.
preview
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.
preview
Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Neste artigo vamos começar a montar a classe C_Orders, para poder enviar pedidos ao servidor de negociação. Vamos fazer isto aos pouco. Já que o intuito será explicar o mais detalhadamente possível como isto será feito, via sistema de mensagens.
preview
Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases

Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases

Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.
preview
Simulação de mercado (Parte 03): Uma questão de performance

Simulação de mercado (Parte 03): Uma questão de performance

Muitas vezes somos obrigados a dar um passo para trás para logo depois dar alguns passos a frente. Neste artigo irei mostrar todas as mudanças que foram necessárias serem feitas para que os indicadores de Mouse e Chart Trade não viessem a ter a sua performance comprometidas. Como bônus irei já apresentar outras mudanças que ocorreram em outros arquivos de cabeçalho, que serão muito usados no futuro.
preview
Simulação de mercado (Parte 02): Cross Order (II)

Simulação de mercado (Parte 02): Cross Order (II)

Diferente do que foi visto no artigo anterior, aqui vamos fazer o controle de seleção no Expert Advisor. Porém, esta não é uma solução ainda definitiva. Mas irá nos atender por hora. Então acompanhe o artigo para entender como implementar uma das soluções possíveis.
preview
Simulação de mercado (Parte 01): Cross Order (I)

Simulação de mercado (Parte 01): Cross Order (I)

Deste artigo em diante iniciaremos a fase dois, na questão sobre replay / simulação de mercado. Então aqui vamos começar mostrando uma possível solução para fazer cruzamento de ordens. Esta solução que mostrarei, não é uma solução definitiva. Ela é apenas uma proposta de solução para o problema que ainda será preciso abordar em breve.
preview
Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)

Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)

Neste artigo, veremos como deveremos implementar a parte do receptor. Ou seja, aqui implementaremos uma versão do Expert Advisor, apenas para testar e aprender como a comunicação via protocolo funciona. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Estratégia de Negociação do SP500 em MQL5 para Iniciantes

Estratégia de Negociação do SP500 em MQL5 para Iniciantes

Descubra como aproveitar o MQL5 para prever o S&P 500 com precisão, misturando a análise técnica clássica para maior estabilidade e combinando algoritmos com princípios testados pelo tempo para obter insights robustos do mercado.
preview
Otimização de Portfólio em Python e MQL5

Otimização de Portfólio em Python e MQL5

Este artigo explora técnicas avançadas de otimização de portfólio usando Python e MQL5 com o MetaTrader 5. Ele demonstra como desenvolver algoritmos para análise de dados, alocação de ativos e geração de sinais de negociação, enfatizando a importância da tomada de decisões orientada por dados na gestão financeira moderna e na mitigação de riscos.
preview
Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5

Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5

Neste artigo, exploramos diferentes maneiras pelas quais os eigenvetores e os autovalores podem ser aplicados na análise exploratória de dados para revelar relacionamentos únicos nos dados.
preview
Desenvolvendo um sistema de Replay (Parte 77): Um novo Chart Trade (IV)

Desenvolvendo um sistema de Replay (Parte 77): Um novo Chart Trade (IV)

Neste artigo, explicarei alguns detalhes e cuidados que você teve tomar quando for criar um protocolo de comunicação. São coisas bem básicas e simples. Não irei de fato pegar pesado neste artigo. Mas é preciso que você entenda o conteúdo deste artigo para entender o que acontecerá no receptor.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

O Ângulo de Ataque é uma métrica frequentemente citada, cuja inclinação é entendida como tendo uma forte correlação com a força de uma tendência predominante. Vamos analisar como ele é comumente usado e compreendido e examinar se há mudanças que poderiam ser introduzidas na forma como é medido, para benefício de um sistema de negociação que o utilize.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

O Exponente de Hurst é uma medida de quanto uma série temporal se autocorrela ao longo do tempo. Entende-se que ele captura as propriedades de longo prazo de uma série temporal e, portanto, tem um peso significativo na análise de séries temporais, mesmo fora do contexto econômico/financeiro. No entanto, focamos em seu potencial benefício para os traders ao analisar como essa métrica poderia ser combinada com médias móveis para construir um sinal potencialmente robusto.
preview
Teoria do caos no trading (Parte 2): Continuamos a imersão

Teoria do caos no trading (Parte 2): Continuamos a imersão

Continuamos a imersão na teoria do caos nos mercados financeiros e analisamos sua aplicabilidade à análise de moedas e outros ativos.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.
preview
Desenvolvendo um sistema de Replay (Parte 76): Um novo Chart Trade (III)

Desenvolvendo um sistema de Replay (Parte 76): Um novo Chart Trade (III)

Neste artigo vamos compreender como o código faltante no artigo anterior, DispatchMessage, funciona. Aqui será feita a introdução do que será visto no próximo artigo. Sendo assim é importante compreender o funcionamento deste procedimento antes de ver o próximo artigo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Neste artigo explicarei grande parte da classe C_ChartFloatingRAD. Esta é responsável por fazer com que o Chart Trade funcione. Porém aqui não irei de fato terminar a explicação. A mesma será finalizada no próximo artigo. Já que o conteúdo neste artigo é bastante denso e precisa ser compreendido a fundo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Negociação com spreads no mercado Forex usando o fator de sazonalidade

Negociação com spreads no mercado Forex usando o fator de sazonalidade

Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
preview
Ferramentas econométricas para previsão de volatilidade: Modelo GARCH

Ferramentas econométricas para previsão de volatilidade: Modelo GARCH

O artigo descreve as propriedades do modelo não linear de heterocedasticidade condicional (GARCH). O indicador iGARCH para prever a volatilidade um passo à frente é construído com base nele. A biblioteca de análise numérica ALGLIB é usada para estimar os parâmetros do modelo.
preview
Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)

Redes neurais recorrentes (RNNs) se destacam em utilizar informações passadas para prever eventos futuros. Suas notáveis capacidades preditivas foram aplicadas em diversos domínios com grande sucesso. Neste artigo, implementaremos modelos de RNN para prever tendências no mercado de forex, demonstrando seu potencial para aumentar a precisão das previsões no trading de forex.
preview
Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)

Algoritmo de busca através de vizinhança — Across Neighborhood Search (ANS)

O artigo explora o potencial do algoritmo ANS, como um passo relevante no desenvolvimento de métodos de otimização flexíveis e inteligentes, capazes de considerar as especificidades da tarefa e a dinâmica do ambiente no espaço de busca.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.
preview
Algoritmo de otimização por reações químicas — Chemical Reaction Optimisation, CRO (Parte II): Montagem e resultados

Algoritmo de otimização por reações químicas — Chemical Reaction Optimisation, CRO (Parte II): Montagem e resultados

Na segunda parte do artigo, reuniremos os operadores químicos em um único algoritmo e apresentaremos uma análise detalhada de seus resultados. Descobriremos como o método de otimização por reações químicas (CRO) superou o desafio de resolver problemas complexos em funções de teste.