事後取引分析:ストラテジーテスターにおけるトレーリングストップと新しいストップレベルの選択
取引の質をさらに高めるため、今回はストラテジーテスターで完了済みの取引を分析するテーマを引き続き取り上げます。異なる種類のトレーリングストップを使用すると、既存の取引結果がどのように変化するかを見ていきましょう。
MQL5での取引戦略の自動化(第20回):CCIとAOを使用した多銘柄戦略
この記事では、CCI (Commodity Channel Index)とAO (Awesome Oscillator)を用いてトレンド反転を検出する多銘柄取引戦略を作成します。戦略の設計、MQL5での実装、バックテストのプロセスについて解説します。記事の最後には、パフォーマンス改善のためのヒントも紹介します。
取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)
この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。
MQL5で取引管理者パネルを作成する(第8回):分析パネル
今日は、管理パネルEAに統合された専用ウィンドウ内に、便利な取引メトリクスを組み込む方法について掘り下げていきます。本稿では、MQL5を活用して分析パネル(Analytics Panel)を開発する方法に焦点を当て、そのパネルが取引管理者にもたらすデータの価値について解説します。この開発プロセスは教育的意義が大きく、初心者・経験者を問わず開発者にとって有益な学びを提供します。この機能は、高度なソフトウェアツールを通じて取引マネージャーを支援する本連載の可能性を示す好例です。さらに、取引管理パネル(Trading Administrator Panel)の機能拡張の一環として、PieChartクラスとChartCanvasクラスの実装についても取り上げます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(V):AnalyticsPanelクラス
この議論では、リアルタイムの市場データや取引口座情報の取得方法、さまざまな計算の実行、そしてその結果をカスタムパネルに表示する方法について探ります。これを実現するために、パネル作成を含むこれらすべての機能をカプセル化したAnalyticsPanelクラスの開発にさらに深く取り組みます。この取り組みは、モジュラー設計の原則とコード構造のベストプラクティスを用い、高度な機能を導入するNew Admin Panel EAの継続的な拡張の一環です。
MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備
この記事では、MQL5の取引システムをストラテジーテスターでの検証に対応するため、経済指標カレンダーのデータをリソースとして埋め込み、ライブ環境ではないテスト分析に活用する方法を解説します。イベントの読み込みと、時間・通貨・影響度に基づくフィルタリングを実装し、最終的にストラテジーテスター内でその動作を検証します。これにより、ニュースに基づいた戦略の効果的なバックテストが可能になります。
MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス
本日は、MQL5の機能を活用して、BMP形式の画像などの外部リソースを利用し、トレーディング管理パネル用に独自のスタイルを持ったホームインターフェイスを作成します。ここで紹介する手法は、画像やサウンドなど複数のリソースを一括でパッケージ化して配布する際に特に有効です。このディスカッションでは、こうした機能をどのように実装し、New_Admin_Panel EAにおいてモダンで視覚的に魅力的なインターフェイスを提供するかを一緒に見ていきましょう。
取引におけるニューラルネットワーク:データの局所構造の探索
ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)
MetaTrader 5ターミナルでの取引において、ニュースのアクセス性は非常に重要な要素です。数多くのニュースAPIが存在するものの、多くのトレーダーはそれらを効果的に取引環境に統合することに課題を抱えています。本記事では、ニュースを最も必要とする場所であるチャート上に直接表示する、効率的なソリューションの構築を目指します。その実現のために、APIソースからのリアルタイムニュースを監視し、表示するNews Headline EA(エキスパートアドバイザー)を作成します。
MQL5入門(第19回):ウォルフ波動の自動検出
本記事では、強気(上昇)および弱気(下降)のウォルフ波動パターンをプログラムで識別し、MQL5を使用して取引する方法を紹介します。ウォルフ波動構造をプログラムで検出し、それに基づいて取引の実行方法を詳しく解説します。これには、主要なスイングポイントの検出、パターンルールの検証、シグナルに基づくエキスパートアドバイザー(EA)の準備が含まれます。
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)
LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
MQL5取引ツール(第7回):複数銘柄ポジションと口座監視のための情報ダッシュボード
本記事では、MQL5で情報ダッシュボードを開発し、複数銘柄のポジションや口座指標(残高、証拠金、余剰証拠金など)を監視できるようにします。リアルタイム更新可能なソート可能グリッド、CSVエクスポート機能、ヘッダーのグロー効果を実装し、使いやすさと視覚的魅力を向上させます。
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)
前回の記事では、PSformerフレームワークの理論的側面について議論しました。このフレームワークは、従来のTransformerアーキテクチャに、パラメータ共有(PS)メカニズムと時空間Segment Attention (SegAtt)という2つの主要な革新をもたらします。本稿では、前回に引き続き、提案された手法をMQL5を用いて実装する作業について説明します。
取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)
エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。
MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ
本記事では、スマートなイベントフィルタリングと選択的ログ出力を用いて経済カレンダーを最適化し、ライブおよびオフラインモードでのバックテストをより高速かつ明確に実施できるようにします。イベント処理を効率化し、ログを重要な取引やダッシュボードイベントに絞ることで、戦略の可視化を向上させます。これらの改善により、ニュース駆動型取引戦略のテストと改善をシームレスにおこなえるようになります。
MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装
この記事では、リアルタイムのニュース更新機能を実装することで、経済指標カレンダーダッシュボードを強化し、市場情報を常に最新かつ実用的な状態に保ちます。MQL5におけるライブデータ取得技術を統合し、ダッシュボード上のイベントを継続的に更新することで、インターフェイスの応答性を向上させます。このアップデートにより、ダッシュボードから最新の経済ニュースに直接アクセスでき、最新データに基づいて取引判断を最適化できるようになります。
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減
モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成
本記事では、取引チャート上で高品質な画像スケーリングを実現するために、双三次補間(バイキュービック補間)を使用した動的なMQL5グラフィカルインターフェイスについて解説します。カスタムオフセットによる動的な中央配置やコーナーアンカーなど、柔軟なポジショニングオプションも紹介します。
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化
本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)
Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)
この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。
MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築
本記事では、MQL5で多時間軸スキャナーダッシュボードを構築し、リアルタイムの取引シグナルを表示する方法を解説します。インタラクティブなグリッドインターフェースの設計、複数のインジケーターによるシグナル計算の実装、そしてクローズボタンの追加を計画しています。記事はバックテストと戦略的取引の利点で締めくくられます。
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)
本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化
チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。
MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入
この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。
取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル
前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。
取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)
階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。
MQL5で取引管理者パネルを作成する(第9回):コード編成(III)コミュニケーションモジュール
MQL5インターフェイス設計における最新の進展を、再設計されたコミュニケーションパネルの公開とともに詳しく解説します。また、モジュール化の原則に基づいて新しい管理パネルを構築するシリーズも引き続き展開していきます。この記事では、CommunicationsDialogクラスを段階的に開発し、それをDialogクラスから継承する方法を丁寧に解説します。さらに、開発には配列およびListViewクラスを活用します。MQL5開発スキルを高めるための実用的な知見を得るために、ぜひ記事を読み、コメント欄でディスカッションにご参加ください。
初心者からエキスパートへ:自動幾何解析システム
幾何学的パターンは、トレーダーに価格動向を簡潔に解釈する手段を提供します。多くのアナリストは手作業でトレンドラインや長方形、その他の形状を描き、形成されたパターンに基づいて取引判断をおこないます。本記事では、自動化による代替手段、すなわちMQL5を活用して最も一般的な幾何学パターンを検出・分析する方法を探ります。方法論を分解して説明し、実装の詳細を論じ、自動パターン認識がトレーダーの市場洞察をどのように鋭くできるかを強調します。
MQL5での取引戦略の自動化(第26回):複数ポジション取引のためのピンバーナンピンシステムの構築
本記事では、ピンバーを検出して取引を開始し、複数ポジションを管理するためのナンピン(難平、Averaging)戦略を用いたピンバーシステムをMQL5で開発します。さらに、トレーリングストップやブレークイーブン調整で強化し、リアルタイムでポジションと利益を監視できるダッシュボードも組み込みます。
取引におけるニューラルネットワーク:方向性拡散モデル(DDM)
本稿では、前向き拡散過程においてデータ依存的な異方性および方向性を持つノイズを活用するDirectional Diffusion Models(DDM、方向性拡散モデル)について議論し、意味のあるグラフ表現を捉える手法を紹介します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(III)-インジケーターインサイト
本記事では、News Headline EAをさらに進化させるために、専用の「インジケーターインサイトレーン」を導入します。これは、RSI、MACD、ストキャスティクス、CCIなどの主要インジケーターから生成されるテクニカルシグナルを、チャート上にコンパクトにまとめて表示する仕組みです。この方法により、MetaTrader 5ターミナルで複数のインジケーターウィンドウを開く必要がなくなり、作業スペースをすっきりと保つことができます。さらに、MQL5のAPIを活用してインジケーターデータをバックグラウンドで取得することで、カスタムロジックを使ったリアルタイムの市場分析や可視化が可能になります。本記事では、MQL5でインジケーターデータを操作し、チャート上の単一水平レーンに、知的で省スペースなスクロール式インサイトシステムを作成する方法を詳しく解説します。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(IV) - ローカルホストAIモデル市場インサイト
本日のディスカッションでは、オープンソースのAIモデルをセルフホスティングし、市場インサイトの生成に活用する方法について探ります。これは、News Headline EA(エキスパートアドバイザー)を拡張し、AIインサイトレーンを導入することで、多機能統合型アシストツールへと変貌させる取り組みの一環です。このアップグレードにより、EAはカレンダーイベント、金融ニュース速報、テクニカル指標に加え、AIによる市場見解を提供できるようになり、タイムリーで多角的、かつ知的なサポートを取引判断に提供します。本日は、実践的な統合戦略や、MQL5が外部リソースと連携して強力で知的な取引ターミナルを構築する方法についても議論します。
取引におけるニューラルネットワーク:双曲潜在拡散モデル(最終回)
HypDiffフレームワークで提案されているように、双曲潜在空間における初期データのエンコーディングに異方性拡散プロセスを用いることで、現在の市場状況におけるトポロジー的特徴を保持しやすくなり、分析の質を向上させることができます。前回の記事では、提案されたアプローチの実装をMQL5を用いて開始しました。今回はその作業を継続し、論理的な完結に向けて進めていきます。
MQL5経済指標カレンダーを使った取引(第5回):レスポンシブコントロールとフィルターボタンでダッシュボードを強化する
この記事では、ダッシュボードの制御を改善するために、通貨ペアフィルター、重要度レベル、時間フィルター、キャンセルオプションのボタンを作成します。これらのボタンは、ユーザーのアクションに動的に応答するようにプログラムされており、シームレスな操作を可能にします。また、ダッシュボードにリアルタイムの変更を反映するために、ユーザーの行動を自動化します。これにより、パネルの全体的な機能性、モビリティ、応答性が向上します。
MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化
本記事では、直感的なニュースナビゲーションを実現する動的なスクロールバーを追加してMQL5経済指標カレンダーを強化します。シームレスなイベント表示と効率的な更新を保証します。テストを通じて、レスポンシブなスクロールバーと洗練されたダッシュボードを検証します。
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現
NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)
SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解
行列分解は、データの特性を理解するために用いられる数学的手法です。行と列で整理された大規模な市場データに行列分解を適用することで、市場のパターンや特性を明らかにすることができます。行列分解は非常に強力なツールであり、本記事ではMetaTrader 5のターミナル内でMQL5 APIを活用し、市場データをより深く分析する方法を紹介します。