MQL5言語での自動売買ロボットのプログラミング例に関する記事

icon

エキスパートアドバイザーはプログラミングの「頂点」であり、それぞれの自動取引の開発者の求めたゴールです。このセクションの記事を読んで、ご自分の自動売買ロボットを作成してください。記述された手順に従うことにより、どのように自動取引システムを作成し、デバッグし、テストするかを学びます。

記事はMQL5プログラミングを教えるだけでなく、どのようにトレーディングアイデアとテクニックを導入するかを示します。どのようにトレーリングストップをプログラムするか、どのように資金管理を適用するか、どのようにインディケータ値を取得するかなど、さらに多くのことを学べます。

新しい記事を追加
最新 | ベスト
preview
ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ダイナミックマルチペアEAの形成(第2回):ポートフォリオの分散化と最適化

ポートフォリオの分散化と最適化とは、複数の資産に戦略的に投資を分散しながら、リスク調整後のパフォーマンス指標に基づいてリターンを最大化する理想的な資産配分を選定する手法です。
preview
取引におけるニューラルネットワーク:対照パターンTransformer

取引におけるニューラルネットワーク:対照パターンTransformer

Contrastive Transformerは、個々のローソク足のレベルと、全体のパターンに基づいて市場を分析するよう設計されています。これにより、市場トレンドのモデリングの質が向上します。さらに、ローソク足とパターンの表現を整合させるために対照学習を用いることで、自己調整が促され、予測の精度が高まります。
preview
MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

MQL5経済指標カレンダーを使った取引(第6回):ニュースイベント分析とカウントダウンタイマーによるトレードエントリーの自動化

本記事では、MQL5経済指標カレンダーを活用して、ユーザー定義のフィルターと時間オフセットに基づいた自動取引エントリーを実装します。対象となる経済指標イベントを検出し、予想値と前回値の比較により、買うか売るかの判断を下します。動的なカウントダウンタイマーは、ニュース公開までの残り時間を表示し、取引後には自動的にリセットされます。
preview
取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

ハイパーネットワークを活用した新しいオブジェクト検出アプローチをご紹介します。ハイパーネットワークはメインモデルの重みを生成し、現在の市場状況の特性を考慮に入れることができます。この手法により、モデルはさまざまな取引条件に適応し、予測精度の向上が可能になります。
preview
ニュース取引が簡単に(第4回):パフォーマンス向上

ニュース取引が簡単に(第4回):パフォーマンス向上

この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。
preview
プライスアクション分析ツールキットの開発(第16回):クォーターズ理論の紹介(II) - Intrusion Detector EA

プライスアクション分析ツールキットの開発(第16回):クォーターズ理論の紹介(II) - Intrusion Detector EA

前回の記事では、「Quarters Drawer」というシンプルなスクリプトを紹介しました。このツールを基盤として、今回はさらに一歩進め、これらのクォーターを監視し、市場がどのように反応するかを見極めるためのモニター型エキスパートアドバイザー(EA)を作成します。本記事では、ゾーン検出ツールの開発プロセスについて紹介します。
preview
MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション

取引におけるニューラルネットワーク:制御されたセグメンテーション

この記事では、複雑なマルチモーダルインタラクション分析と特徴量理解の方法について説明します。
preview
MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

この記事では、MQL5の取引システムをストラテジーテスターでの検証に対応するため、経済指標カレンダーのデータをリソースとして埋め込み、ライブ環境ではないテスト分析に活用する方法を解説します。イベントの読み込みと、時間・通貨・影響度に基づくフィルタリングを実装し、最終的にストラテジーテスター内でその動作を検証します。これにより、ニュースに基づいた戦略の効果的なバックテストが可能になります。
preview
MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス

MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス

本日は、MQL5の機能を活用して、BMP形式の画像などの外部リソースを利用し、トレーディング管理パネル用に独自のスタイルを持ったホームインターフェイスを作成します。ここで紹介する手法は、画像やサウンドなど複数のリソースを一括でパッケージ化して配布する際に特に有効です。このディスカッションでは、こうした機能をどのように実装し、New_Admin_Panel EAにおいてモダンで視覚的に魅力的なインターフェイスを提供するかを一緒に見ていきましょう。
preview
MQL5取引ツール(第7回):複数銘柄ポジションと口座監視のための情報ダッシュボード

MQL5取引ツール(第7回):複数銘柄ポジションと口座監視のための情報ダッシュボード

本記事では、MQL5で情報ダッシュボードを開発し、複数銘柄のポジションや口座指標(残高、証拠金、余剰証拠金など)を監視できるようにします。リアルタイム更新可能なソート可能グリッド、CSVエクスポート機能、ヘッダーのグロー効果を実装し、使いやすさと視覚的魅力を向上させます。
preview
MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス

MQL5で取引管理者パネルを作成する(第10回):外部リソースベースのインターフェイス

本日は、MQL5の機能を活用して、BMP形式の画像などの外部リソースを利用し、トレーディング管理パネル用に独自のスタイルを持ったホームインターフェイスを作成します。ここで紹介する手法は、画像やサウンドなど複数のリソースを一括でパッケージ化して配布する際に特に有効です。このディスカッションでは、こうした機能をどのように実装し、New_Admin_Panel EAにおいてモダンで視覚的に魅力的なインターフェイスを提供するかを一緒に見ていきましょう。
preview
事後取引分析:ストラテジーテスターにおけるトレーリングストップと新しいストップレベルの選択

事後取引分析:ストラテジーテスターにおけるトレーリングストップと新しいストップレベルの選択

取引の質をさらに高めるため、今回はストラテジーテスターで完了済みの取引を分析するテーマを引き続き取り上げます。異なる種類のトレーリングストップを使用すると、既存の取引結果がどのように変化するかを見ていきましょう。
preview
MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

この記事では、MQL5の取引システムをストラテジーテスターでの検証に対応するため、経済指標カレンダーのデータをリソースとして埋め込み、ライブ環境ではないテスト分析に活用する方法を解説します。イベントの読み込みと、時間・通貨・影響度に基づくフィルタリングを実装し、最終的にストラテジーテスター内でその動作を検証します。これにより、ニュースに基づいた戦略の効果的なバックテストが可能になります。
preview
取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。
preview
MQL5で取引管理者パネルを作成する(第8回):分析パネル

MQL5で取引管理者パネルを作成する(第8回):分析パネル

今日は、管理パネルEAに統合された専用ウィンドウ内に、便利な取引メトリクスを組み込む方法について掘り下げていきます。本稿では、MQL5を活用して分析パネル(Analytics Panel)を開発する方法に焦点を当て、そのパネルが取引管理者にもたらすデータの価値について解説します。この開発プロセスは教育的意義が大きく、初心者・経験者を問わず開発者にとって有益な学びを提供します。この機能は、高度なソフトウェアツールを通じて取引マネージャーを支援する本連載の可能性を示す好例です。さらに、取引管理パネル(Trading Administrator Panel)の機能拡張の一環として、PieChartクラスとChartCanvasクラスの実装についても取り上げます。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(V):AnalyticsPanelクラス

MQL5で取引管理者パネルを作成する(第9回):コード編成(V):AnalyticsPanelクラス

この議論では、リアルタイムの市場データや取引口座情報の取得方法、さまざまな計算の実行、そしてその結果をカスタムパネルに表示する方法について探ります。これを実現するために、パネル作成を含むこれらすべての機能をカプセル化したAnalyticsPanelクラスの開発にさらに深く取り組みます。この取り組みは、モジュラー設計の原則とコード構造のベストプラクティスを用い、高度な機能を導入するNew Admin Panel EAの継続的な拡張の一環です。
preview
MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

MQL5経済指標カレンダーを使った取引(第7回):リソースベースのニュースイベント分析による戦略テストの準備

この記事では、MQL5の取引システムをストラテジーテスターでの検証に対応するため、経済指標カレンダーのデータをリソースとして埋め込み、ライブ環境ではないテスト分析に活用する方法を解説します。イベントの読み込みと、時間・通貨・影響度に基づくフィルタリングを実装し、最終的にストラテジーテスター内でその動作を検証します。これにより、ニュースに基づいた戦略の効果的なバックテストが可能になります。
preview
取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

取引におけるニューラルネットワーク:パターンTransformerを用いた市場分析

モデルを使用して市場の状況を分析する場合、主にローソク足に注目します。しかし、ローソク足パターンが将来の価格変動を予測するのに役立つことは長い間知られていました。この記事では、これら両方のアプローチを統合できる方法について説明します。
preview
MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

本記事では、スマートなイベントフィルタリングと選択的ログ出力を用いて経済カレンダーを最適化し、ライブおよびオフラインモードでのバックテストをより高速かつ明確に実施できるようにします。イベント処理を効率化し、ログを重要な取引やダッシュボードイベントに絞ることで、戦略の可視化を向上させます。これらの改善により、ニュース駆動型取引戦略のテストと改善をシームレスにおこなえるようになります。
preview
MQL5での取引戦略の自動化(第20回):CCIとAOを使用した多銘柄戦略

MQL5での取引戦略の自動化(第20回):CCIとAOを使用した多銘柄戦略

この記事では、CCI (Commodity Channel Index)とAO (Awesome Oscillator)を用いてトレンド反転を検出する多銘柄取引戦略を作成します。戦略の設計、MQL5での実装、バックテストのプロセスについて解説します。記事の最後には、パフォーマンス改善のためのヒントも紹介します。
preview
取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。
preview
MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

MQL5経済指標カレンダーを使った取引(第8回):ニュース駆動型バックテストの最適化 - スマートなイベントフィルタリングと選択的ログ

本記事では、スマートなイベントフィルタリングと選択的ログ出力を用いて経済カレンダーを最適化し、ライブおよびオフラインモードでのバックテストをより高速かつ明確に実施できるようにします。イベント処理を効率化し、ログを重要な取引やダッシュボードイベントに絞ることで、戦略の可視化を向上させます。これらの改善により、ニュース駆動型取引戦略のテストと改善をシームレスにおこなえるようになります。
preview
取引におけるニューラルネットワーク:データの局所構造の探索

取引におけるニューラルネットワーク:データの局所構造の探索

ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。
preview
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)

前回の記事では、PSformerフレームワークの理論的側面について議論しました。このフレームワークは、従来のTransformerアーキテクチャに、パラメータ共有(PS)メカニズムと時空間Segment Attention (SegAtt)という2つの主要な革新をもたらします。本稿では、前回に引き続き、提案された手法をMQL5を用いて実装する作業について説明します。
preview
取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

取引におけるニューラルネットワーク:時系列予測のためのTransformerの最適化(LSEAttention)

LSEAttentionフレームワークは、Transformerアーキテクチャの改善を提供します。この手法は、特に長期の多変量時系列予測のために設計されました。提案されたアプローチは、従来のTransformerでよく遭遇するエントロピーの崩壊や学習の不安定性の問題を解決するために応用可能です。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)

MetaTrader 5ターミナルでの取引において、ニュースのアクセス性は非常に重要な要素です。数多くのニュースAPIが存在するものの、多くのトレーダーはそれらを効果的に取引環境に統合することに課題を抱えています。本記事では、ニュースを最も必要とする場所であるチャート上に直接表示する、効率的なソリューションの構築を目指します。その実現のために、APIソースからのリアルタイムニュースを監視し、表示するNews Headline EA(エキスパートアドバイザー)を作成します。
preview
MQL5での取引戦略の自動化(第35回):ブレーカーブロック取引システムの作成

MQL5での取引戦略の自動化(第35回):ブレーカーブロック取引システムの作成

本記事では、MQL5でブレーカーブロック取引システムを作成します。本システムは、レンジ相場を識別し、ブレイクアウトを検出、スイングポイントでブレーカーブロックを検証した上で、リスクパラメータを定義してリテスト取引を実行します。また、オーダーブロックおよびブレーカーブロックを動的なラベルと矢印で可視化し、自動売買やトレーリングストップにも対応しています。
preview
取引におけるニューラルネットワーク:TEMPO法の実践結果

取引におけるニューラルネットワーク:TEMPO法の実践結果

TEMPO法について引き続き学習します。この記事では、実際の履歴データに対する提案されたアプローチの実際の有効性を評価します。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。
preview
取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。
preview
MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装

MQL5経済指標カレンダーを使った取引(第4回):ダッシュボードでのリアルタイムニュース更新の実装

この記事では、リアルタイムのニュース更新機能を実装することで、経済指標カレンダーダッシュボードを強化し、市場情報を常に最新かつ実用的な状態に保ちます。MQL5におけるライブデータ取得技術を統合し、ダッシュボード上のイベントを継続的に更新することで、インターフェイスの応答性を向上させます。このアップデートにより、ダッシュボードから最新の経済ニュースに直接アクセスでき、最新データに基づいて取引判断を最適化できるようになります。
preview
取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

本記事では、取引チャート上で高品質な画像スケーリングを実現するために、双三次補間(バイキュービック補間)を使用した動的なMQL5グラフィカルインターフェイスについて解説します。カスタムオフセットによる動的な中央配置やコーナーアンカーなど、柔軟なポジショニングオプションも紹介します。
preview
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
preview
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。
preview
MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。
preview
MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築

MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築

本記事では、MQL5で多時間軸スキャナーダッシュボードを構築し、リアルタイムの取引シグナルを表示する方法を解説します。インタラクティブなグリッドインターフェースの設計、複数のインジケーターによるシグナル計算の実装、そしてクローズボタンの追加を計画しています。記事はバックテストと戦略的取引の利点で締めくくられます。
preview
初心者からエキスパートへ:自動幾何解析システム

初心者からエキスパートへ:自動幾何解析システム

幾何学的パターンは、トレーダーに価格動向を簡潔に解釈する手段を提供します。多くのアナリストは手作業でトレンドラインや長方形、その他の形状を描き、形成されたパターンに基づいて取引判断をおこないます。本記事では、自動化による代替手段、すなわちMQL5を活用して最も一般的な幾何学パターンを検出・分析する方法を探ります。方法論を分解して説明し、実装の詳細を論じ、自動パターン認識がトレーダーの市場洞察をどのように鋭くできるかを強調します。
preview
取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。