MQL5での取引戦略の自動化(第19回):Envelopes Trend Bounce Scalping - 取引執行とリスク管理(その2)
この記事では、MQL5でEnvelopes Trend Bounce Scalping戦略の取引実行とリスク管理を実装します。注文の発注、ストップロスやポジションサイズなどのリスク制御をおこないます。最後に、第18回の基盤をもとにバックテストと最適化をおこないます。
取引におけるニューラルネットワーク:状態空間モデル
これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
プライスアクション分析ツールキットの開発(第7回):Signal Pulse EA
ボリンジャーバンドとストキャスティクスオシレーターを組み合わせたMQL5エキスパートアドバイザー(EA)「Signal Pulse」で、多時間枠分析の可能性を引き出しましょう。高精度で勝率の高い取引シグナルを提供します。この戦略の実装方法や、カスタム矢印を用いた売買シグナルの可視化手法を学び、実践的な活用を目指しましょう。複数の時間枠にわたる自動分析を通じて、トレード判断力を高めたいトレーダーに最適なツールです。
知っておくべきMQL5ウィザードのテクニック(第16回):固有ベクトルによる主成分分析
データ分析における次元削減技術である主成分分析について、固有値とベクトルを用いてどのように実装できるかを考察します。いつものように、MQL5ウィザードで使用可能なExpertSignalクラスのプロトタイプの開発を目指します。
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)
マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
リスク管理への定量的なアプローチ:PythonとMetaTrader 5を使用してVaRモデルを適用し、多通貨ポートフォリオを最適化する
この記事では、複数通貨ポートフォリオの最適化におけるバリュー・アット・リスク(VaR: Value at Risk)モデルの可能性について探ります。PythonのパワーとMetaTrader 5の機能を活用し、効率的な資本配分とポジション管理のためにVaR分析をどのように実装するかを紹介します。理論的な基礎から実践的な実装まで、アルゴリズム取引における最も堅牢なリスク計算手法の一つであるVaRの応用に関するあらゆる側面を取り上げています。
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数
カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
MQL5における高度な注文執行アルゴリズム:TWAP、VWAP、アイスバーグ注文
MQL5フレームワークで、機関投資家向けの高度な執行アルゴリズム(TWAP、VWAP、アイスバーグ注文)を小口トレーダー向けに提供します。統合された実行マネージャーとパフォーマンスアナライザーを用いて、注文の分割(スライシング)や分析をよりスムーズかつ正確に行える環境を提供します。
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ
前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ
この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
MQL5で取引管理者パネルを作成する(第6回):取引管理パネル(II)
この記事では、多機能管理パネルの取引管理パネル(Trade Management Panel)を強化します。コードを簡素化し、読みやすさ、保守性、効率性を向上させる強力なヘルパー関数を導入します。また、追加のボタンをシームレスに統合し、インターフェイスを強化して、より幅広い取引タスクを処理する方法も紹介します。ポジションの管理、注文の調整、ユーザーとのやり取りの簡素化など、このガイドは、堅牢でユーザーフレンドリーな取引管理パネルの開発に役立ちます。
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存
多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例
この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。
初心者からプロまでMQL5をマスターする(第6回):エキスパートアドバイザー開発の基礎
この記事は初心者向け連載の続きです。今回はエキスパートアドバイザー(EA)開発の基本原理について解説します。2つのEAを作成します。1つ目はインジケーターを使わず、予約注文で取引をおこなうEA。2つ目は標準の移動平均線(MA)インジケーターを利用し、成行価格で取引をおこなうEAです。ここでは、前回までの記事の内容をある程度理解していることを前提としています。
MQL5で取引管理者パネルを作成する(第4回):ログインセキュリティ層
悪意のある人物が取引管理者室に侵入し、世界中の何百万ものトレーダーに貴重な洞察を伝えるために使用されるコンピューターと管理パネルにアクセスしたと想像してください。このような侵入は、誤解を招くメッセージの不正送信や、意図しないアクションをトリガーするボタンのランダムクリックなど、悲惨な結果につながる可能性があります。このディスカッションでは、MQL5のセキュリティ対策と、これらの脅威から保護するために管理パネルに実装した新しいセキュリティ機能について説明します。セキュリティプロトコルを強化することで、通信チャネルを保護し、グローバルな取引コミュニティの信頼を維持することを目指しています。この記事のディスカッションでさらに詳しい情報を見つけてください。
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。
MQL5での取引戦略の自動化(第15回):プライスアクションハーモニックCypherパターンの可視化
この記事では、CypherハーモニックパターンのMQL5における自動化について探究し、その検出方法とMetaTrader 5チャート上での可視化を詳しく解説します。スイングポイントを特定し、フィボナッチに基づいたパターンを検証し、明確な視覚的注釈とともに取引を実行するエキスパートアドバイザー(EA)を実装します。記事の最後では、効果的な取引のためのバックテストおよび最適化方法についても説明します。
ニューラルネットワークが簡単に(第81回):Context-Guided Motion Analysis (CCMR)
これまでの作業では、常に環境の現状を評価しました。同時に、指標の変化のダイナミクスは常に「舞台裏」にとどまっていました。この記事では、連続する2つの環境状態間のデータの直接的な変化を評価できるアルゴリズムを紹介したいと思います。
ディープラーニングを用いたCNA(因果ネットワーク分析)、SMOC(確率モデル最適制御)、ナッシュゲーム理論の例
以前の記事で発表されたこれら3つの例にディープラーニング(DL)を加え、以前の結果と比較します。目的は、他のEAにディープラーニングを追加する方法を学ぶことです。
ニューラルネットワークが簡単に(第50回):Soft Actor-Critic(モデルの最適化)
前回の記事では、Soft Actor-Criticアルゴリズムを実装しましたが、有益なモデルを訓練することはできませんでした。今回は、先に作成したモデルを最適化し、望ましい結果を得ます。
ニュース取引が簡単に(第5回):取引の実施(II)
この記事では、取引管理クラスを拡張し、ニュースイベントを取引するための買い逆指値注文(買いストップ注文)と売り逆指値注文(売りストップ注文)を追加します。また、オーバーナイト取引を防ぐために、これらの注文に有効期限の制約を実装します。さらに、逆指値注文(ストップ注文)を使用する際に発生しうるスリッページ、特にニュースイベント中に発生する可能性のあるスリッページを防止または最小限に抑えるために、スリッページ関数をエキスパートアドバイザー(EA)に組み込みます。
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)
最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
従来の機械学習手法を使用した為替レートの予測:ロジットモデルとプロビットモデル
この記事では、為替レートの予測を目的とした取引用EAの構築を試みます。アルゴリズムは、ロジスティック回帰およびプロビット回帰といった古典的な分類モデルに基づいています。取引シグナルのフィルターとして、尤度比検定が用いられます。
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)
モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発
MQL5のコードやプロジェクトで、包括的な未決注文管理EX5ライブラリを開発して実装する方法を学びましょう。本記事では、広範な未決注文管理EX5ライブラリを作成する手順を紹介し、それをインポートおよび実装する方法を、取引パネルまたはグラフィカルユーザーインターフェース(GUI)の構築を通じて解説します。このEA注文パネルを使用すれば、チャートウィンドウ上のGUIから、指定されたマジックナンバーに関連する未決注文を直接オープン、監視、削除することが可能です。
Metatrader 5のWebsockets — Windows APIを使用した非同期クライアント接続
この記事では、MetaTraderプログラム向けに非同期のWebSocketクライアント接続を可能にするカスタムDLL(ダイナミックリンクライブラリ)の開発について解説します。
スイングエントリーモニタリングEAの開発
年末が近づくと、多くの長期トレーダーは市場の過去を振り返り、その動きや傾向を分析して、将来の動向を予測しようとします。この記事では、MQL5を用いて長期エントリーの監視をおこなうエキスパートアドバイザー(EA)の開発について解説します。手動取引や自動監視システムの不在によって、長期的な取引チャンスを逃してしまうという課題に取り組むことが本稿の目的です。今回は、特に取引量の多い通貨ペアの一つを例に挙げ、効果的な戦略を立案しながらソリューションを構築していきます。
ニューラルネットワークが簡単に(第76回):Multi-future Transformerで多様な相互作用パターンを探る
この記事では、今後の値動きを予測するというトピックを続けます。Multi-future Transformerのアーキテクチャーをお見せします。その主なアイデアは、未来のマルチモーダル分布をいくつかのユニモーダル分布に分解することで、シーンのエージェント間の相互作用のさまざまなモデルを効果的にシミュレートすることができるというものです。
MQL5での取引戦略の自動化(第5回):Adaptive Crossover RSI Trading Suite戦略の開発
この記事では、14期間および50期間の移動平均クロスオーバーをシグナルとして使用し、14期間RSIフィルターで確認するAdaptive Crossover RSI Trading Suiteシステムを開発します。本システムには取引日フィルター、注釈付きのシグナル矢印、監視用のリアルタイムダッシュボードが含まれており、このアプローチにより自動取引の精度と適応性が向上します。
MQL5での取引戦略の自動化(第9回):アジアブレイクアウト戦略のためのエキスパートアドバイザーの構築
この記事では、アジアブレイクアウト戦略のためのエキスパートアドバイザー(EA)をMQL5で構築します。セッション中の高値と安値を計算し、移動平均によるトレンドフィルタリングをおこないます。また、動的なオブジェクトスタイリング、ユーザー定義の時間入力、堅牢なリスク管理も実装します。最後に、プログラムの精度を高めるためのバックテストおよび最適化手法を紹介します。
MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)
取引管理者の役割はTelegram通信だけにとどまらず、注文管理、ポジション追跡、インターフェイスのカスタマイズなど、さまざまな制御アクティビティにも携わります。この記事では、MQL5の複数の機能をサポートするためにプログラムを拡張するための実用的な洞察を共有します。このアップデートは、主にコミュニケーションに重点を置くという現在のAdminパネルの制限を克服し、より幅広いタスクを処理できるようにすることを目的としています。
ニューラルネットワークが簡単に(第51回):Behavior-Guided Actor-Critic (BAC)
最後の2つの記事では、エントロピー正則化を報酬関数に組み込んだSoft Actor-Criticアルゴリズムについて検討しました。このアプローチは環境探索とモデル活用のバランスをとりますが、適用できるのは確率モデルのみです。今回の記事では、確率モデルと確定モデルの両方に適用できる代替アプローチを提案します。
MQL5での取引戦略の自動化(第11回):マルチレベルグリッド取引システムの開発
本記事では、MQL5を使用してマルチレベルのグリッド取引システムEAを開発し、グリッド取引戦略の背後にあるアーキテクチャとアルゴリズム設計に焦点を当てます。複数層にわたるグリッドロジックの実装と、市場のさまざまな状況に対応するためのリスク管理手法について探ります。最後に、自動売買システムの構築・テスト・改善をおこなうための詳細な説明と実践的なヒントを提供します。
MQL5での取引戦略の自動化(第12回):Mitigation Order Blocks (MOB)戦略の実装
本記事では、スマートマネー取引向けにオーダーブロックの自動検出をおこなうMQL5取引システムを構築します。戦略のルールを明確にし、そのロジックをMQL5で実装し、さらに取引を効果的に執行するためにリスク管理も統合します。最後に、システムのパフォーマンスを評価するためにバックテストをおこない、最適な結果を得るための改良を加えます。
MQL5での取引戦略の自動化(第28回):視覚的フィードバックによるプライスアクションバットハーモニックパターンの作成
本記事では、MQL5で弱気と強気の両方のバット(Bat)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを用いて取引を自動化するバットパターンシステムを開発し、チャートオブジェクトによる視覚的フィードバックを強化します。
ダイナミックマルチペアEAの形成(第3回):平均回帰とモメンタム戦略
本記事では、ダイナミックマルチペアエキスパートアドバイザー(EA)を構築する旅の第3部として、平均回帰戦略とモメンタム戦略の統合に焦点を当てます。価格の平均からの乖離(Zスコア)を検出して取引に活かす方法や、複数の通貨ペアにおけるモメンタムを測定して取引方向を判断する方法について詳しく解説します。
MQL5で取引管理者パネルを作成する(第12回):FX取引計算ツールの統合
取引において重要な数値を正確に計算することは、すべてのトレーダーにとって欠かせません。本記事では、強力なユーティリティであるFX取引計算ツールを取引管理パネルに組み込み、マルチパネル型の取引管理者システムの機能をさらに拡張する方法について解説します。リスク、ポジションサイズ、潜在的な利益を効率的に算出することは、取引の精度を高めるうえで非常に重要です。この新機能は、パネル内でこれらの計算をよりスムーズかつ直感的におこなえるよう設計されています。本記事では、MQL5を用いた高度な取引パネル構築の実践的な応用例を紹介します。
MQL5での取引戦略の自動化(第18回):Envelopes Trend Bounce Scalping - コア基盤とシグナル生成(その1)
本記事では、MQL5でのEnvelopes Trend Bounce Scalpingエキスパートアドバイザー(EA)のコア基盤を構築します。シグナル生成のためにエンベロープやその他のインジケーターを初期化します。また、次回の取引実行に備えてバックテストの設定をおこないます。