MQL5言語での自動売買ロボットのプログラミング例に関する記事

icon

エキスパートアドバイザーはプログラミングの「頂点」であり、それぞれの自動取引の開発者の求めたゴールです。このセクションの記事を読んで、ご自分の自動売買ロボットを作成してください。記述された手順に従うことにより、どのように自動取引システムを作成し、デバッグし、テストするかを学びます。

記事はMQL5プログラミングを教えるだけでなく、どのようにトレーディングアイデアとテクニックを導入するかを示します。どのようにトレーリングストップをプログラムするか、どのように資金管理を適用するか、どのようにインディケータ値を取得するかなど、さらに多くのことを学べます。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション

プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。
preview
ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)

研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
preview
ニューラルネットワークが簡単に(第87回):時系列パッチ

ニューラルネットワークが簡単に(第87回):時系列パッチ

予測は時系列分析において重要な役割を果たします。この新しい記事では、時系列パッチの利点についてお話しします。
preview
MQL5での定量分析:有望なアルゴリズムの実装

MQL5での定量分析:有望なアルゴリズムの実装

定量分析とは何なのか、また、主要プレーヤーがどのように定量分析を使用しているのかを分析します。MQL5言語で定量分析アルゴリズムの1つを作成します。
preview
ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール

アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。
preview
ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)

ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)

今回は、かなり新しいStochastic Marginal Actor-Critic (SMAC)アルゴリズムを検討します。このアルゴリズムは、エントロピー最大化の枠組みの中で潜在変数方策を構築することができます。
preview
ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題

ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題

オフライン訓練では、訓練サンプルデータに基づいてエージェントの方策を最適化します。その結果、エージェントは自分の行動に自信を持つことができます。しかし、そのような楽観論は必ずしも正当化されるとは限らず、模型の操作中にリスクを増大させる可能性があります。今日は、こうしたリスクを軽減するための方法の1つを紹介しましょう。
preview
MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築

この記事では、バタフライハーモニックパターンを検出するためのMQL5エキスパートアドバイザー(EA)を構築します。ピボットポイントを特定し、フィボナッチレベルを検証してパターンを確認します。次に、チャート上にパターンを可視化し、確認された際には自動的に取引を実行します。
preview
ニューラルネットワークが簡単に(第41回):階層モデル

ニューラルネットワークが簡単に(第41回):階層モデル

この記事では、複雑な機械学習問題を解決するための効果的なアプローチを提供する階層的訓練モデルについて説明します。階層モデルはいくつかのレベルで構成され、それぞれがタスクの異なる側面を担当します。
preview
周波数領域でのフィルタリングと特徴抽出

周波数領域でのフィルタリングと特徴抽出

この記事では、予測モデルに有用な独自の特徴を抽出するために周波数領域で表現された時系列にデジタルフィルタを適用する方法を探ります。
preview
MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)

この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。
preview
ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

本日は、勝ちトレードでストップアウトされる回数を最小限に抑えるためのアルゴリズム的手法を探るディスカッションにご参加ください。この問題は非常に難易度が高く、取引コミュニティで見られる多くの提案は、明確で一貫したルールに欠けているのが実情です。私たちはこの課題に対してアルゴリズム的なアプローチを用いることで、トレードの収益性を高め、1回あたりの平均損失を減らすことに成功しました。とはいえ、ストップアウトを完全に排除するには、まださらなる改良が必要です。私たちの解決策は、それには至らないものの、誰にとっても試す価値のある良い第一歩です。
preview
ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

以前の記事でおこなったテストの結果、訓練された戦略の最適性は、使用する訓練セットに大きく依存するという結論に達しました。この記事では、モデルを訓練するための軌道を選択するための、シンプルかつ効果的な手法を紹介します。
preview
ニューラルネットワークが簡単に(第74回):適応による軌道予測

ニューラルネットワークが簡単に(第74回):適応による軌道予測

本稿では、様々な環境条件に適応可能なマルチエージェントの軌道予測について、かなり効果的な手法を紹介します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上

MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上

の記事では、MQL5からTelegramへのメッセージおよびスクリーンショット送信に使用されている既存コードを、再利用可能なモジュール関数へと整理し、リファクタリングをおこないます。これによりプロセス全体が効率化され、複数インスタンスでの実行効率が高まるだけでなく、コードの管理も容易になります。
preview
取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

この記事では、点群におけるオブジェクト検出問題を解決するためのアテンションを用いたアルゴリズムについて解説します。点群におけるオブジェクト検出は、多くの現実世界の応用において極めて重要です。
preview
ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)

ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)

最後の2つの記事は、望ましい報酬の自己回帰モデルの文脈で行動シーケンスをモデル化するDecision Transformer法に費やされました。この記事では、この方法の別の最適化アルゴリズムについて見ていきます。
preview
MQL5における代替リスクリターン指標

MQL5における代替リスクリターン指標

本稿では、シャープレシオの代替指標とされるいくつかのリスクリターン指標の実装を紹介し、その特徴を分析するために仮想資本曲線を検証します。
preview
ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

最初の記事で強化学習を扱って以来、何らかの形で、環境の探索と報酬関数の決定という2つの問題に触れてきました。最近の記事は、オフライン学習における探索の問題に費やされています。今回は、作者が報酬関数を完全に排除したアルゴリズムを紹介したいと思います。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第7回):チャート上のインジケーター自動化のためのコマンド解析

MQL5-Telegram統合エキスパートアドバイザーの作成(第7回):チャート上のインジケーター自動化のためのコマンド解析

この記事では、TelegramコマンドをMQL5と統合して、取引チャートへのインジケーターの追加を自動化する方法について解説します。ユーザーからのコマンドを解析し、MQL5で実行し、インジケーターベースの取引を円滑におこなうためのシステムをテストするプロセスについて説明します。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(II)

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(II)

本日は、外部ニュースAPIを統合し、News Headline EAの見出し取得元として活用する新たなステップに進みます。このフェーズでは、既存の大手ニュースソースから新興の情報源まで幅広く取り上げ、それぞれのAPIに効果的にアクセスする方法を学びます。さらに、取得したデータをパースし、エキスパートアドバイザー(EA)内での表示に最適化された形式へ変換する手法についても解説します。ニュース見出しや経済指標カレンダーをチャート上に直接表示できることには、大きなメリットがあります。コンパクトで邪魔にならないインターフェースを通じて、取引中でも効率的に情報を確認できるようになるのです。
preview
ニューラルネットワークが簡単に(第67回):過去の経験を活かした新しい課題の解決

ニューラルネットワークが簡単に(第67回):過去の経験を活かした新しい課題の解決

この記事では、訓練セットにデータを収集する方法について引き続き説明します。明らかに、学習プロセスには環境との絶え間ない相互作用が必要です。しかし、状況はさまざまです。
preview
ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

明示的な報酬関数なしに有用なスキルを訓練することは、階層的強化学習における主な課題の1つです。前回までに、この問題を解くための2つのアルゴリズムを紹介しましたが、環境調査の完全性についての疑問は残されています。この記事では、スキル訓練に対する異なるアプローチを示します。その使用は、システムの現在の状態に直接依存します。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定

この記事では、取引操作を効率化するために設計されたMQL5のControlsクラスを使用して、インタラクティブな取引ダッシュボードを作成します。パネルには、タイトル、[Trade]、[Close]、[Information]のナビゲーションボタン、取引の実行とポジションの管理用の専用アクションボタンが表示されます。この記事を読み終える頃には、今後の記事でさらに機能強化するための基礎パネルが完成しているはずです。
preview
予測による三角裁定取引

予測による三角裁定取引

この記事では、三角裁定を簡略化し、市場に慣れていない方でも、予測や専用ソフトを使用してより賢く通貨を取引する方法をご紹介します。専門知識を駆使して取引する準備はできていますか?
preview
ニューラルネットワークが簡単に(第66回):オフライン学習における探索問題

ニューラルネットワークが簡単に(第66回):オフライン学習における探索問題

モデルは、用意された訓練データセットのデータを使用してオフラインで訓練されます。一定の利点がある反面、環境に関する情報が訓練データセットのサイズに大きく圧縮されてしまうというマイナス面もあります。それが逆に、探求の可能性を狭めています。この記事では、可能な限り多様なデータで訓練データセットを埋めることができる方法について考えます。
preview
エキスパートアドバイザーのQ値の開発

エキスパートアドバイザーのQ値の開発

この記事では、エキスパートアドバイザー(EA)がストラテジーテスターで表示できる品質スコアを開発する方法を見ていきます。Van TharpとSunny Harrisという2つの有名な計算方法を見てみましょう。
preview
多通貨エキスパートアドバイザーの開発(第2回):取引戦略の仮想ポジションへの移行

多通貨エキスパートアドバイザーの開発(第2回):取引戦略の仮想ポジションへの移行

複数の戦略を並行して動作させる多通貨エキスパートアドバイザー(EA)の開発を続けましょう。マーケットポジションを建てることに関連するすべての作業を、戦略レベルから、戦略を管理するEAのレベルに移してみましょう。戦略自体は、マーケットポジションを持つことなく、仮想の取引のみをおこないます。
preview
ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

ニューラルネットワークが簡単に(第72回):ノイズ環境における軌道予測

前回説明した目標条件付き予測符号化(GCPC)法では、将来の状態予測の質が重要な役割を果たします。この記事では、金融市場のような確率的環境における予測品質を大幅に向上させるアルゴリズムを紹介したいとおもいます。
preview
ソケットを使ったツイッターのセンチメント分析

ソケットを使ったツイッターのセンチメント分析

この革新的な取引ボットは、MetaTrader 5とPythonを統合し、リアルタイムのソーシャルメディアセンチメント分析を活用して自動売買の意思決定をおこないます。特定の金融商品に関連するツイッターのセンチメントを分析することで、ボットはソーシャルメディアのトレンドを実用的な取引シグナルに変換します。ソケット通信によるクライアントサーバーアーキテクチャを採用しており、MT5の取引機能とPythonのデータ処理能力とのシームレスな相互作用を実現しています。
preview
MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築

この記事では、三尊天井(Head and Shoulders)パターンの検出と売買をMQL5で自動化します。その構造を分析し、検出および取引をおこなうエキスパートアドバイザー(EA)を実装し、バックテストでその結果を検証します。このプロセスを通じて、改良の余地を残しつつも実用的な取引アルゴリズムが明らかになります。
preview
MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

本日は、現在開発中の取引管理パネルのセキュリティ強化について説明します。Telegram APIを統合し、2要素認証(2FA)を実現する新しいセキュリティ戦略にMQL5を実装する方法を探ります。このディスカッションでは、MQL5を活用してセキュリティ対策を強化する方法について貴重な洞察を得ることができます。さらに、MathRand関数の機能に焦点を当て、セキュリティフレームワーク内でどのように効果的に活用できるかを検討します。さらに詳しく知りたい方は、読み続けてください。
preview
ニューラルネットワークが簡単に(第55回):対照的内発制御(Contrastive intrinsic control、CIC)

ニューラルネットワークが簡単に(第55回):対照的内発制御(Contrastive intrinsic control、CIC)

対照訓練は、教師なしで表現を訓練する方法です。その目標は、データセットの類似点と相違点を強調するためにモデルを訓練することです。この記事では、対照訓練アプローチを使用してさまざまなActorスキルを探究する方法について説明します。
preview
MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

MQL5入門(第13回):初心者のためのカスタムインジケーター作成ガイド(II)

この記事では、カスタムの平均足インジケーターをゼロから作成する方法を解説し、カスタムインジケーターをエキスパートアドバイザー(EA)に組み込む方法も紹介します。インジケーターの計算方法、取引実行ロジック、リスク管理の手法についても取り上げ、自動売買戦略の向上を目指します。
preview
MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション

MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション

本記事では、MQL5を用いて「ミッドナイトレンジブレイクアウト + Break of Structure (BoS)」戦略を自動化し、ブレイクアウトの検出および取引実行のコードを詳細に解説します。エントリー、ストップ、利益確定のためのリスクパラメータを正確に定義し、実際の取引に活用できるようバックテストおよび最適化もおこないます。
preview
MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築

この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。
preview
MQL5入門(第14回):初心者のためのカスタムインジケーター作成ガイド(III)

MQL5入門(第14回):初心者のためのカスタムインジケーター作成ガイド(III)

MQL5でチャートオブジェクトを使ってハーモニックパターンインジケーターを構築する方法を学びましょう。スイングポイントの検出、フィボナッチリトレースメントの適用、そしてパターン認識の自動化について解説します。