Sistemas neurosimbólicos en trading algorítmico: Combinación de reglas simbólicas y redes neuronales
El artículo relata la experiencia del desarrollo de un sistema comercial híbrido que combine el análisis técnico clásico con las redes neuronales. El autor describe detalladamente la arquitectura del sistema, desde el análisis básico de patrones y la estructura de la red neuronal hasta los mecanismos de toma de decisiones comerciales, compartiendo código real y observaciones de carácter práctico.
Modelos ocultos de Markov para la predicción de la volatilidad siguiendo tendencias
Los modelos ocultos de Markov (Hidden Markov Models, HMM) son potentes herramientas estadísticas que identifican los estados subyacentes del mercado mediante el análisis de los movimientos observables de los precios. En el ámbito bursátil, los HMM mejoran la predicción de la volatilidad y proporcionan información para las estrategias de seguimiento de tendencias mediante la modelización y la anticipación de los cambios en los regímenes de mercado. En este artículo, presentaremos el procedimiento completo para desarrollar una estrategia de seguimiento de tendencias que utiliza HMM para predecir la volatilidad como filtro.
Kit de herramientas de negociación MQL5 (Parte 6): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente completada
Aprenda a crear un módulo EX5 de funciones exportables que consultan y guardan datos de forma fluida para el pedido pendiente completado más recientemente. En esta guía paso a paso, mejoraremos la librería History Management EX5 desarrollando funciones específicas y compartimentadas para recuperar las propiedades esenciales de la última orden pendiente completada. Estas propiedades incluyen el tipo de orden, el tiempo de configuración, el tiempo de ejecución, el tipo de ejecución y otros detalles críticos necesarios para la gestión y el análisis eficaces del historial de operaciones de las órdenes pendientes.
Características del Wizard MQL5 que debe conocer (Parte 52): Accelerator Oscillator (AC)
El Accelerator Oscillator es otro indicador de Bill Williams que sigue la aceleración del impulso del precio y no solo su ritmo. Aunque es muy similar al oscilador Awesome que analizamos en un artículo reciente, busca evitar los efectos de retraso centrándose más en la aceleración que en la velocidad. Como siempre, examinamos qué patrones podemos obtener de esto y también qué importancia podría tener cada uno de ellos en el trading a través de un asesor experto creado por el Asistente MQL5 (MQL5 Wizard).
Métodos de conjunto para mejorar las tareas de clasificación en MQL5
En este artículo, presentamos la implementación de varios clasificadores de conjunto en MQL5 y analizamos su eficacia en diferentes situaciones.
Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)
En este artículo se implementará la filtración de noticias para eventos de noticias individuales basándose en sus identificadores. Además, se mejorarán las consultas SQL anteriores para proporcionar información adicional o reducir el tiempo de ejecución de la consulta. Además, se hará funcional el código creado en los artículos anteriores.
Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)
El algoritmo Royal Flush Optimization del autor ofrece una nueva perspectiva en la resolución de problemas de optimización sustituyendo la clásica codificación binaria de los algoritmos genéticos por un enfoque basado en sectores e inspirado en los principios del póquer. El RFO demuestra cómo la simplificación de los principios básicos puede dar lugar a un método de optimización eficaz y práctico. El artículo presenta un análisis detallado del algoritmo y los resultados de las pruebas.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media
Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
Características del Wizard MQL5 que debe conocer (Parte 51): Aprendizaje por refuerzo con SAC
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que utiliza tres redes neuronales. Una red de actores y dos redes de críticos. Estos modelos de aprendizaje automático se emparejan en una relación maestro-esclavo en la que los críticos se modelan para mejorar la precisión de las previsiones de la red de actores. Al tiempo que introducimos ONNX en esta serie, exploramos cómo estas ideas podrían ponerse a prueba como una señal personalizada de un asesor experto ensamblado por un asistente.
Kit de herramientas de negociación MQL5 (Parte 5): Ampliación de la libreria EX5 de gestión del historial con funciones de posición
Descubra cómo crear funciones EX5 exportables para consultar y guardar de forma eficiente datos históricos de posición. En esta guía paso a paso, ampliaremos la libreria de gestión del historial EX5 mediante el desarrollo de módulos que recuperan las propiedades clave de la posición cerrada más recientemente. Entre ellos se incluyen el beneficio neto, la duración de la operación, el stop loss basado en pips, el take profit, los valores de beneficio y otros detalles importantes.
Búsqueda dialéctica - Dialectic Search (DA)
Hoy nos familiarizaremos con el Algoritmo Dialéctico (DA), un nuevo método de optimización global inspirado en el concepto filosófico de la dialéctica. El algoritmo explota la singular división de la población en pensadores especulativos y prácticos. Las pruebas demuestran un impresionante rendimiento de hasta el 98% en tareas pequeñas y una eficiencia global del 57,95%. El artículo explica estas métricas y presenta una descripción detallada del algoritmo y resultados experimentales con distintos tipos de características.
Neurona biológica para la previsión de series temporales financieras
Construimos un sistema de neuronas biológicamente correcto para la predicción de series temporales. La introducción de un medio similar al plasma en la arquitectura de una red neuronal ha creado una especie de "mente colectiva", en la que cada neurona influye en el trabajo del sistema no solo a través de conexiones directas, sino también mediante interacciones electromagnéticas de largo alcance. ¿Cómo se comportará el sistema de modelización neural del cerebro en el mercado?
Integración de MQL5 con paquetes de procesamiento de datos (Parte 4): Gestión de Big Data
Esta parte explora técnicas avanzadas para integrar MQL5 con potentes herramientas de procesamiento de datos y se centra en el manejo eficiente de grandes volúmenes de datos para mejorar el análisis comercial y la toma de decisiones.
Indicador de previsión de volatilidad con Python
Hoy pronosticaremos la volatilidad extrema futura utilizando una clasificación binaria. Asimismo, crearemos un indicador de previsión de volatilidad extrema usando el aprendizaje automático.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 5): Volatility Navigator EA
Determinar la dirección del mercado puede ser sencillo, pero saber cuándo entrar puede resultar complicado. Como parte de la serie titulada «Desarrollo de un kit de herramientas para el análisis de la acción del precio», me complace presentar otra herramienta que proporciona puntos de entrada, niveles de toma de ganancias y colocación de órdenes stop loss. Para lograrlo, hemos utilizado el lenguaje de programación MQL5. Profundicemos en cada paso de este artículo.
Desarrollamos un asesor experto para controlar los puntos de entrada en las operaciones swing
A medida que el año se acerca a su fin, los tráders a largo plazo suelen hacer balance del año, analizando la historia, el comportamiento y las tendencias del mercado para evaluar el potencial de los movimientos futuros. En este artículo, analizaremos el desarrollo de un asesor experto para el seguimiento de operaciones a largo plazo utilizando MQL5. El objetivo será hacer frente a problemas como la pérdida de oportunidades comerciales debido al trading manual y a la falta de sistemas de supervisión automatizados. Como ejemplo de definición eficaz de una estrategia para nuestra solución y también para desarrollar la misma, utilizaremos uno de los pares comerciales más destacados.
Métodos de ensamble para mejorar predicciones numéricas en MQL5
En este artículo presentamos la implementación de varios métodos de aprendizaje por ensamble en MQL5 y examinamos su efectividad en distintos escenarios.
Modelo de riesgo de cartera utilizando el criterio de Kelly y la simulación de Monte Carlo
Durante décadas, los operadores han utilizado la fórmula del criterio de Kelly para determinar la proporción óptima de capital que se debe asignar a una inversión o apuesta con el fin de maximizar el crecimiento a largo plazo y minimizar el riesgo de ruina. Sin embargo, seguir ciegamente el criterio de Kelly utilizando el resultado de una sola prueba retrospectiva suele ser peligroso para los operadores individuales, ya que en el trading en vivo, la ventaja comercial disminuye con el tiempo y el rendimiento pasado no es un indicador de resultados futuros. En este artículo, presentaré un enfoque realista para aplicar el criterio de Kelly a la asignación de riesgos de uno o más EA en MetaTrader 5, incorporando los resultados de la simulación de Monte Carlo de Python.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Kit de herramientas de negociación MQL5 (Parte 4): Desarrollo de una biblioteca EX5 para la gestión del historial
Aprenda a recuperar, procesar, clasificar, ordenar, analizar y gestionar posiciones cerradas, órdenes e historiales de operaciones utilizando MQL5 mediante la creación de una amplia biblioteca EX5 de gestión de historiales con un enfoque detallado paso a paso.
Creación de barras 3D basadas en el tiempo, el precio y el volumen
Qué son los gráficos de precios multidimensionales en 3D y cómo se crean. Cómo las barras 3D predicen las inversiones de precios, y cómo Python y MetaTrader 5 permiten construir estas barras volumétricas en tiempo real.
Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)
Se trata de un algoritmo propio. En este artículo, le presentaremos el Algoritmo de viaje evolutivo en el tiempo (TETA), inspirado en el concepto de universos paralelos y flujos temporales. La idea básica del algoritmo es que, si bien no es posible viajar en el tiempo en el sentido habitual, podemos elegir una secuencia de acontecimientos que generen realidades distintas.
Algoritmo de trading evolutivo con aprendizaje por refuerzo y extinción de individuos no rentables (ETARE)
Hoy le presentamos un innovador algoritmo comercial que combina algoritmos evolutivos con aprendizaje profundo por refuerzo para la negociación de divisas. El algoritmo utiliza un mecanismo de extinción de individuos ineficaces para optimizar la estrategia comercial.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA
Estamos pasando de simplemente ver las métricas analizadas en gráficos a una perspectiva más amplia que incluye la integración de Telegram. Esta mejora permite que los resultados importantes se envíen directamente a tu dispositivo móvil a través de la aplicación Telegram. Acompáñenos en este viaje que exploraremos juntos en este artículo.
Métodos de discretización de los movimientos de precios en Python
Hoy analizaremos varios métodos de discretización de precios en Python + MQL5. En este artículo compartiré mi experiencia práctica en el desarrollo de una biblioteca Python que implementa toda una gama de enfoques para la formación de barras: desde las clásicas Volume y Range bars hasta métodos más exóticos como Renko y Kagi, velas de ruptura de tres líneas, barras de Rango; ¿cuáles son sus estadísticas, de qué otra forma se pueden representar los precios de forma discreta?
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias
CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 3): Asesor Experto Analytics Master
Pasar de un simple script de trading a un Asesor Experto (EA) totalmente funcional puede mejorar significativamente su experiencia de trading. Imagina tener un sistema que supervisa automáticamente tus gráficos, realiza cálculos esenciales en segundo plano y proporciona actualizaciones periódicas cada dos horas. Este EA estaría equipado para analizar métricas clave que son cruciales para tomar decisiones comerciales informadas, lo que garantiza que usted tenga acceso a la información más actualizada para ajustar sus estrategias de manera eficaz.
Aprendizaje automático y Data Science (Parte 32): Mantener actualizados los modelos de IA, aprendizaje en línea
En el cambiante mundo del comercio, adaptarse a los cambios del mercado no es solo una opción, es una necesidad. Cada día surgen nuevos patrones y tendencias, lo que dificulta que incluso los modelos de aprendizaje automático más avanzados sigan siendo eficaces ante condiciones en constante evolución. En este artículo, exploraremos cómo mantener tus modelos relevantes y receptivos a los nuevos datos del mercado mediante el reentrenamiento automático.
Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)
En este trabajo, analizaremos un nuevo algoritmo de optimización basado en la población, el CPA (Cyclic Parthenogenesis Algorithm), inspirado en la estrategia reproductiva única de los pulgones. El algoritmo combina dos mecanismos de reproducción: la partenogénesis y la reproducción sexual, y utiliza una estructura de población colonial con posibilidad de migración entre colonias. Las características clave del algoritmo son el cambio adaptativo entre diferentes estrategias de cría y un sistema de intercambio de información entre colonias usando un mecanismo de vuelo.
Modelos de regresión no lineal en la bolsa de valores
Modelos de regresión no lineal en la bolsa de valores: ¿Es posible predecir los mercados financieros? Consideremos la creación de un modelo para pronosticar precios para EURUSD y crear dos robots basados en él: en Python y MQL5.
Perspectivas bursátiles a través del volumen: más allá de los gráficos OHLC
Sistema de negociación algorítmica que combina el análisis de volumen con técnicas de aprendizaje automático, concretamente redes neuronales LSTM. A diferencia de los enfoques tradicionales de negociación, que se centran principalmente en los movimientos de los precios, este sistema hace hincapié en los patrones de volumen y sus derivados para predecir los movimientos del mercado. La metodología incorpora tres componentes principales: análisis de derivadas de volumen (derivadas primera y segunda), predicciones LSTM para patrones de volumen e indicadores técnicos tradicionales.
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales
La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
Información mutua como criterio para la selección de características paso a paso
En este artículo, presentamos una implementación MQL5 de selección de características paso a paso basada en la información mutua entre un conjunto de predictores óptimos y una variable objetivo.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos
En línea con nuestra visión de simplificar la acción del precio, nos complace presentar otra herramienta que puede mejorar significativamente su análisis de mercado y ayudarle a tomar decisiones bien informadas. Esta herramienta muestra indicadores técnicos clave, como los precios del día anterior, los niveles significativos de soporte y resistencia, y el volumen de operaciones, al tiempo que genera automáticamente señales visuales en el gráfico.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal
La diferencia temporal es otro algoritmo del aprendizaje por refuerzo que actualiza los valores Q basándose en la diferencia entre las recompensas previstas y las reales durante el entrenamiento del agente. Se centra específicamente en la actualización de los valores Q sin tener en cuenta su emparejamiento estado-acción. Por lo tanto, veremos cómo aplicar esto, tal y como hemos hecho en artículos anteriores, en un Asesor Experto creado mediante un asistente.
Funciones de activación neuronal durante el aprendizaje: ¿la clave de una convergencia rápida?
En este artículo presentamos un estudio de la interacción de distintas funciones de activación con algoritmos de optimización en el contexto del entrenamiento de redes neuronales. Se presta especial atención a la comparación entre el ADAM clásico y su versión poblacional al tratar con una amplia gama de funciones de activación, incluidas las funciones oscilatorias ACON y Snake. Usando una arquitectura MLP minimalista (1-1-1) y un único ejemplo de entrenamiento, la influencia de las funciones de activación en el proceso de optimización se aísla de otros factores. Asimismo, propondremos un enfoque para controlar los pesos de la red mediante los límites de las funciones de activación y un mecanismo de reflexión de pesos que evitará los problemas de saturación y estancamiento en el aprendizaje.
Computación cuántica y trading: Una nueva mirada a las previsiones de precios
En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
Analizamos el código binario de los precios en bolsa (Parte I): Una nueva visión del análisis técnico
En este artículo presentaremos un enfoque innovador del análisis técnico basado en la conversión de los movimientos de los precios en código binario. El autor demostrará cómo diversos aspectos del comportamiento de los mercados -desde simples movimientos de precios hasta patrones complejos- pueden codificarse en una secuencia de ceros y unos.
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)
El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.