
Características del Wizard MQL5 que debe conocer (Parte 33): Núcleos de procesos gaussianos
Los núcleos del proceso gaussiano son la función de covarianza de la distribución normal que podría desempeñar un papel en el pronóstico. Exploramos este algoritmo único en una clase de señal personalizada de MQL5 para ver si podría usarse como una señal de entrada y salida principal.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo
En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos
En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.

Características del Wizard MQL5 que debe conocer (Parte 32): Regularización
La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5
En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.

Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases
Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.

Operar con noticias de manera sencilla (Parte 3): Realizando operaciones
En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.

Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)
En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)
En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 74): Un nuevo Chart Trade (I)
En este artículo, modificaremos el último código visto en esta secuencia sobre Chart Trade. Estos cambios son necesarios para adaptar el código al modelo actual del sistema de repetición/simulador. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe considerarse una aplicación destinada a otros fines que no sean el aprendizaje y el estudio de los conceptos mostrados.

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida
La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.

Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA
En este artículo, profundizamos en los aspectos cruciales de la elección de los datos de Forex más relevantes y de alta calidad para mejorar el rendimiento de los modelos de IA.

Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático
La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.

Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico
La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas
Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.

Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA
Es una práctica común que muchos modelos de Inteligencia Artificial predigan un único valor futuro. Sin embargo, en este artículo profundizaremos en la poderosa técnica de utilizar modelos de aprendizaje automático para predecir múltiples valores futuros. Este enfoque, conocido como pronóstico de múltiples pasos, nos permite predecir no sólo el precio de cierre de mañana, sino también el de pasado mañana y más allá. Al dominar la previsión en varios pasos, los operadores y los científicos de datos pueden obtener conocimientos más profundos y tomar decisiones más informadas, mejorando significativamente sus capacidades de predicción y planificación estratégica.

Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP
Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.

Análisis causal de series temporales mediante entropía de transferencia
En este artículo, analizamos cómo se puede aplicar la causalidad estadística para identificar variables predictivas. Exploraremos el vínculo entre causalidad y entropía de transferencia, además de presentar código MQL5 para detectar transferencias direccionales de información entre dos variables.

Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)
Este artículo presenta el algoritmo de campo eléctrico artificial (AEFA) inspirado en la ley de Coulomb de la fuerza electrostática. El algoritmo modela fenómenos eléctricos para resolver problemas de optimización complejos usando partículas cargadas y las interacciones de estas. El AEFA presenta propiedades únicas en el contexto de otros algoritmos relacionados con las leyes de la naturaleza.

Aprendizaje automático y Data Science (Parte 27): Redes neuronales convolucionales (CNN) en los robots comerciales de MetaTrader 5: ¿Merecen la pena?
Las redes neuronales convolucionales (CNN) son famosas por su destreza en la detección de patrones en imágenes y vídeos, con aplicaciones que abarcan diversos campos. En este artículo, exploramos el potencial de las CNN para identificar patrones valiosos en los mercados financieros y generar señales comerciales eficaces para los robots comerciales de MetaTrader 5. Descubramos cómo puede aprovecharse esta técnica de aprendizaje automático profundo para tomar decisiones de negociación más inteligentes.

Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.

Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU
En el artículo anterior, hablamos de una RNN sencilla que, a pesar de su incapacidad para comprender las dependencias a largo plazo en los datos, fue capaz de realizar una estrategia rentable. En este artículo hablaremos tanto de la memoria a largo plazo (LSTM) como de la unidad recurrente controlada (GRU). Estas dos se introdujeron para superar las deficiencias de una RNN simple y ser más astuta que ella.

Algoritmo de optimización de reacciones químicas (CRO) (Parte II): Ensamblaje y resultados
En la segunda parte, reuniremos los operadores químicos en un único algoritmo y presentaremos un análisis detallado de sus resultados. Descubramos cómo el método de optimización de reacciones químicas (CRO) aborda la solución de problemas complejos en funciones de prueba.

La teoría del caos en el trading (Parte 2): Continuamos la inmersión
Continuamos nuestra inmersión en la teoría del caos en los mercados financieros: hoy analizaremos su aplicabilidad al análisis de divisas y otros activos.

Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.

Visualización de transacciones en un gráfico (Parte 2): Visualización gráfica de datos
Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de operaciones para analizar las entradas de operaciones. Toda la información necesaria sobre una operación debe mostrarse cómodamente en un gráfico con la posibilidad de dibujar distintos plazos.

Desarrollo de un sistema de repetición (Parte 73): Una comunicación inusual (II)
En este artículo, veremos cómo transferir información en tiempo real entre el indicador y el servicio, y comprenderemos por qué pueden surgir problemas al modificar el timeframe y cómo resolverlos correctamente. Como bono, tendrás acceso a la última versión de la aplicación de repetición/simulador. El contenido es exclusivamente didáctico y no debe utilizarse con otros fines.

Desarrollo de un sistema de repetición (Parte 72): Una comunicación inesperada (I)
Lo que construiremos será complejo de entender. Por esta razón, en este artículo solo presentaré el inicio de la construcción. Léelo con calma, ya que es esencial comprender su contenido para pasar al siguiente paso. El objetivo de este contenido es meramente didáctico, sin aplicación práctica más allá del aprendizaje y estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 71): Ajuste del tiempo (IV)
En este artículo, mostraré cómo implementar lo presentado en el artículo anterior en el servicio de repetición/simulación. Pero, como suele ocurrir con muchas cosas en la vida, es habitual que surjan problemas. Y este caso no fue una excepción. Sigue leyendo y descubre cuál será el tema del próximo artículo de esta serie. El contenido expuesto aquí tiene como único propósito la enseñanza. En ningún caso debe considerarse una aplicación cuyo objetivo no sea el aprendizaje y el estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 70): Ajuste del tiempo (III)
En este artículo, mostraré cómo utilizar la función CustomBookAdd de manera correcta y funcional. Aunque pueda parecer sencillo, tiene muchas implicaciones. Por ejemplo, permite indicar al indicador de mouse si el símbolo personalizado está en subasta, en negociación o si el mercado está cerrado. El contenido expuesto aquí tiene como único objetivo ser didáctico. En ningún caso debe considerarse una aplicación cuya finalidad sea distinta a la de aprender y estudiar los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 69): Ajuste del tiempo (II)
Aquí entenderemos por qué necesitamos utilizar la función iSpread. Al mismo tiempo, comprenderemos cómo el sistema nos informa del tiempo restante de la barra cuando no hay ticks disponibles para hacerlo. El contenido presentado aquí tiene como único propósito la enseñanza y la didáctica. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 68): Ajuste del tiempo (I)
A continuación, continuaremos con el trabajo de lograr que el indicador del mouse nos informe sobre el tiempo restante de la barra en momentos de baja liquidez. Aunque a primera vista parece sencillo, verás que esta tarea es mucho más complicada. Esto se debe a algunos obstáculos que tendremos que superar. Por eso, es importante que sigas esta primera parte para poder comprender las siguientes.

Desarrollo de un sistema de repetición (Parte 67): Refinando el indicador de control
En este artículo, mostraré lo que un poco de refinamiento en el código es capaz de lograr. Dicho refinamiento tiene como objetivo simplificar nuestro código, hacer un mayor uso de las llamadas a la biblioteca de MQL5 y, sobre todo, conseguir que sea mucho más estable, seguro y fácil de usar en otros códigos que desarrollemos en el futuro. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 66): Presionando play en el servicio (VII)
En este artículo, implementaremos una primera solución para identificar cuándo puede aparecer una nueva barra en el gráfico. Esta solución es aplicable a diversas situaciones. Sin embargo, comprender su desarrollo puede ayudarte a entender varios aspectos. El contenido expuesto aquí tiene como único propósito la enseñanza. En ningún caso debe considerarse una aplicación cuyo objetivo no sea el aprendizaje y el estudio de los conceptos presentados.

Elementos del análisis de correlación en MQL5: Prueba chi-cuadrado de Pearson de independencia y ratio de correlación.
El artículo analiza las herramientas clásicas del análisis de correlaciones. Se hace hincapié en los breves antecedentes teóricos, así como en la aplicación práctica de la prueba de independencia chi-cuadrado de Pearson y la ratio de correlación.

Desarrollo de un sistema de repetición (Parte 65): Presionando play en el servicio (VI)
En este artículo, mostraré cómo lo implementaremos y resolveremos el problema del indicador del mouse cuando se utiliza junto con la aplicación de repetición/simulación. El contenido expuesto aquí tiene como único propósito la enseñanza. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)
En este artículo, mostraré cómo corregir dos errores presentes en el código. Sin embargo, he intentado explicarlas de manera que tú, aspirante a programador, entiendas que las cosas no siempre ocurrirán como habías previsto. Pero esto no debe ser motivo de desesperación, sino una oportunidad para aprender. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe interpretarse como una aplicación cuya finalidad sea distinta al aprendizaje y estudio de los conceptos presentados.

Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)
En este archivo, resolveremos por fin los problemas de simulación de los ticks en una barra de un minuto, de manera que puedan coexistir con ticks reales. De esta manera, evitaremos enfrentarnos a problemas en el futuro. El contenido expuesto aquí tiene como único objetivo la didáctica. En ningún caso debe interpretarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)
Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.