Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
preview
Algoritmo de optimización de neuroboides 2 — Neuroboids Optimization Algorithm 2 (NOA2)

Algoritmo de optimización de neuroboides 2 — Neuroboids Optimization Algorithm 2 (NOA2)

El nuevo algoritmo de optimización de autor, NOA2 (Neuroboids Optimisation Algorithm 2), combina los principios de la inteligencia de enjambre con el control neuronal. El NOA2 combina la mecánica del comportamiento de los enjambres de neuroboids con un sistema neuronal adaptativo que permite a los agentes ajustar de forma autónoma su comportamiento a medida que buscan un óptimo. El algoritmo se está desarrollando activamente y muestra potencial para resolver problemas complejos de optimización.
preview
Desarrollo de un sistema de repetición (Parte 67): Refinando el indicador de control

Desarrollo de un sistema de repetición (Parte 67): Refinando el indicador de control

En este artículo, mostraré lo que un poco de refinamiento en el código es capaz de lograr. Dicho refinamiento tiene como objetivo simplificar nuestro código, hacer un mayor uso de las llamadas a la biblioteca de MQL5 y, sobre todo, conseguir que sea mucho más estable, seguro y fácil de usar en otros códigos que desarrollemos en el futuro. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos mostrados.
preview
Técnicas de remuestreo para la evaluación de predicciones y clasificaciones en MQL5

Técnicas de remuestreo para la evaluación de predicciones y clasificaciones en MQL5

En este artículo exploraremos e implementaremos métodos para evaluar la calidad de los modelos que utilizan un único conjunto de datos como conjuntos de entrenamiento y validación.
preview
Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)

Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)

En este archivo, resolveremos por fin los problemas de simulación de los ticks en una barra de un minuto, de manera que puedan coexistir con ticks reales. De esta manera, evitaremos enfrentarnos a problemas en el futuro. El contenido expuesto aquí tiene como único objetivo la didáctica. En ningún caso debe interpretarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Visión por computadora para el trading (Parte 1): Creamos una funcionalidad básica sencilla

Visión por computadora para el trading (Parte 1): Creamos una funcionalidad básica sencilla

Sistema de previsión de EURUSD mediante visión por computadora y aprendizaje profundo. Descubra cómo las redes neuronales convolucionales pueden reconocer patrones de precios complejos en el mercado de divisas y predecir la evolución de los tipos con una precisión de hasta el 54%. El artículo revela la metodología de creación de un algoritmo que usa tecnologías de inteligencia artificial para analizar visualmente los gráficos en lugar de los indicadores técnicos tradicionales. El autor muestra el proceso de transformación de los datos de precios en "imágenes", su procesamiento por una red neuronal y una visión única de la "conciencia" de la IA a través de mapas de activación y mapas de calor de la atención. El práctico código Python que utiliza la biblioteca MetaTrader 5 permite a los lectores reproducir el sistema y aplicarlo a sus propias transacciones.
preview
Métodos de discretización de los movimientos de precios en Python

Métodos de discretización de los movimientos de precios en Python

Hoy analizaremos varios métodos de discretización de precios en Python + MQL5. En este artículo compartiré mi experiencia práctica en el desarrollo de una biblioteca Python que implementa toda una gama de enfoques para la formación de barras: desde las clásicas Volume y Range bars hasta métodos más exóticos como Renko y Kagi, velas de ruptura de tres líneas, barras de Rango; ¿cuáles son sus estadísticas, de qué otra forma se pueden representar los precios de forma discreta?
preview
Simulación de mercado (Parte 15): Sockets (IX)

Simulación de mercado (Parte 15): Sockets (IX)

En este artículo, explicaré una de las posibles soluciones a lo que he estado intentando mostrar. Es decir, cómo permitir que un usuario de Excel realice una acción en MetaTrader 5 sin enviar órdenes ni abrir o cerrar una posición. La idea es que el usuario utilice Excel para realizar un análisis fundamental de algún símbolo. Y que, usando únicamente Excel, pueda indicar a un Asesor Experto que se esté ejecutando en MetaTrader 5 que debe abrir o cerrar una posición determinada.
preview
Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)

Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)

Llevamos bastante tiempo trabajando únicamente con los indicadores. Pero ahora ha llegado el momento de hacer que el servicio vuelva a ejecutar su trabajo y podamos ver el gráfico construyéndose con los datos proporcionados. Sin embargo, como no todo es tan simple, será necesario observar para entender lo que nos espera.
preview
Métodos de ensamble para mejorar predicciones numéricas en MQL5

Métodos de ensamble para mejorar predicciones numéricas en MQL5

En este artículo presentamos la implementación de varios métodos de aprendizaje por ensamble en MQL5 y examinamos su efectividad en distintos escenarios.
preview
Simulación de mercado (Parte 08): Sockets (II)

Simulación de mercado (Parte 08): Sockets (II)

¿Qué te parece si creamos algo práctico con sockets? Bien, en este artículo empezaremos a crear un minichat. Acompáñanos y descubre cómo se hace, porque será algo bastante interesante. Recuerda que el código que se mostrará aquí tiene un objetivo puramente didáctico. En realidad, no deberías utilizar este código con fines comerciales ni en una aplicación finalizada, ya que no cuenta con ningún tipo de seguridad en la transmisión de datos y es posible ver el contenido que se está transportando a través del socket.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 13): Herramienta RSI Sentinel

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 13): Herramienta RSI Sentinel

La evolución de los precios puede analizarse eficazmente identificando divergencias, con indicadores técnicos como el RSI que proporcionan señales de confirmación cruciales. En el siguiente artículo, explicamos cómo el análisis automatizado de divergencias del RSI puede identificar continuaciones y reversiones de tendencias, ofreciendo así información valiosa sobre el sentimiento del mercado.
preview
Trading con algoritmos: La IA y su camino hacia las alturas doradas

Trading con algoritmos: La IA y su camino hacia las alturas doradas

En este artículo veremos un método para crear estrategias comerciales para el oro utilizando el aprendizaje automático. Considerando el enfoque propuesto para el análisis y la previsión de series temporales desde distintos ángulos, podemos determinar sus ventajas e inconvenientes en comparación con otras formas de crear sistemas comerciales basados únicamente en el análisis y la previsión de series temporales financieras.
preview
Mecanismos de compuertas en el aprendizaje en conjuntos

Mecanismos de compuertas en el aprendizaje en conjuntos

En este artículo, continuamos nuestra exploración de los modelos ensamblados analizando el concepto de compuertas, concretamente cómo pueden ser útiles para combinar los resultados de los modelos con el fin de mejorar la precisión de las predicciones o la generalización de los modelos.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (II): Modularización

Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (II): Modularización

En este debate, damos un paso más allá al desglosar nuestro programa MQL5 en módulos más pequeños y manejables. Estos componentes modulares se integrarán posteriormente en el programa principal, mejorando su organización y facilidad de mantenimiento. Este enfoque simplifica la estructura de nuestro programa principal y permite reutilizar los componentes individuales en otros asesores expertos (EA) y desarrollos de indicadores. Al adoptar este diseño modular, creamos una base sólida para futuras mejoras, lo que beneficia tanto a nuestro proyecto como a la comunidad de desarrolladores en general.
preview
Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento

Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.
preview
Simulación de mercado (Parte 09): Sockets (III)

Simulación de mercado (Parte 09): Sockets (III)

Este artículo es la continuación del anterior. En él veremos cómo se implementará el Asesor Experto, centrándonos principalmente en cómo debe hacerse el código del servidor. El código del artículo anterior no es suficiente para que las cosas funcionen como deberían, por lo que es necesario profundizar en él. Por esta razón, es necesario que leas ambos artículos para comprender mejor lo que ocurrirá.
preview
Analizamos el código binario de los precios en bolsa (Parte II): Convirtiendo a BIP39 y escribiendo un modelo GPT

Analizamos el código binario de los precios en bolsa (Parte II): Convirtiendo a BIP39 y escribiendo un modelo GPT

Seguimos intentando descifrar los movimientos de los precios.... ¿Qué tal un análisis lingüístico del "diccionario de mercado" que obtendríamos convirtiendo el código binario de precios en BIP39? En el presente artículo, nos adentramos en un enfoque innovador del análisis de los datos bursátiles y exploramos cómo pueden aplicarse las modernas técnicas de procesamiento del lenguaje natural al lenguaje del mercado.
preview
ADAM poblacional (Estimación Adaptativa de Momentos)

ADAM poblacional (Estimación Adaptativa de Momentos)

Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
preview
Simulación de mercado (Parte 13): Sockets (VII)

Simulación de mercado (Parte 13): Sockets (VII)

Cuando tú desarrollas algo, ya sea en xlwings o en cualquier otro paquete que nos permita leer y escribir directamente en Excel, en realidad deberías notar que todos los programas, funciones o procedimientos se ejecutan y luego finalizan su tarea. No permanecen allí dentro de un bucle, y, por más que intentes hacer las cosas de otra forma.
preview
Simulación de mercado (Parte 07): Sockets (I)

Simulación de mercado (Parte 07): Sockets (I)

Sockets. ¿Sabes para qué sirven o cómo usarlos en MetaTrader 5? Si la respuesta es no, comencemos aprendiendo un poco sobre ellos. Este artículo trata de lo más básico. Pero, como existen diversas maneras de hacer lo mismo, y lo que realmente nos interesa es siempre el resultado, quiero mostrar que sí, existe una forma sencilla de pasar datos desde MetaTrader 5 hacia otros programas, como, por ejemplo, Excel. Sin embargo, la idea principal no es transferir datos de MetaTrader 5 a Excel, sino hacer lo contrario. Es decir, transferir datos desde Excel, o desde cualquier otro programa, hacia MetaTrader 5.
preview
Un nuevo enfoque para los criterios personalizados en las optimizaciones (Parte 1): Ejemplos de funciones de activación

Un nuevo enfoque para los criterios personalizados en las optimizaciones (Parte 1): Ejemplos de funciones de activación

El primero de una serie de artículos que analizan las matemáticas de los criterios personalizados, con especial atención a las funciones no lineales utilizadas en las redes neuronales, el código MQL5 para su implementación y el uso de compensaciones específicas y correccionales.
preview
Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)

Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)

En este artículo, mostraré cómo corregir dos errores presentes en el código. Sin embargo, he intentado explicarlas de manera que tú, aspirante a programador, entiendas que las cosas no siempre ocurrirán como habías previsto. Pero esto no debe ser motivo de desesperación, sino una oportunidad para aprender. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe interpretarse como una aplicación cuya finalidad sea distinta al aprendizaje y estudio de los conceptos presentados.
preview
Algoritmo de optimización de la fuerza central — Central Force Optimization (CFO)

Algoritmo de optimización de la fuerza central — Central Force Optimization (CFO)

Este artículo presenta un algoritmo de optimización de la fuerza central (CFO) inspirado en las leyes de la gravedad. Hoy investigaremos cómo los principios de atracción física pueden resolver problemas de optimización en los que las soluciones "más difíciles" atraen a sus homólogas menos exitosas.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 16): Introducción a la teoría de los cuartos (II) - Intrusion Detector EA

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 16): Introducción a la teoría de los cuartos (II) - Intrusion Detector EA

En nuestro artículo anterior presentamos un script sencillo llamado «The Quarters Drawer». Partiendo de esa base, ahora damos el siguiente paso creando un Asesor Experto (Expert Advisor, EA) de monitoreo, destinado a seguir estos cuartos y a proporcionar supervisión sobre posibles reacciones del mercado en dichos niveles. Acompáñenos mientras exploramos el proceso de desarrollo de una herramienta de detección de zonas en este artículo.
preview
Características del Wizard MQL5 que debe conocer (Parte 54): Aprendizaje por refuerzo con SAC híbrido y tensores

Características del Wizard MQL5 que debe conocer (Parte 54): Aprendizaje por refuerzo con SAC híbrido y tensores

Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que analizamos en un artículo anterior, donde también presentamos Python y ONNX en esta serie como enfoques eficientes para entrenar redes. Revisamos el algoritmo con el objetivo de aprovechar los tensores, gráficos computacionales que a menudo se utilizan en Python.
preview
Análisis espectral singular unidimensional

Análisis espectral singular unidimensional

El artículo aborda aspectos teóricos y prácticos del método de análisis espectral singular (ARS), un método eficaz de análisis de series temporales que permite representar la compleja estructura de una serie como una descomposición en componentes simples, como la tendencia, las fluctuaciones estacionales (periódicas) y el ruido.
preview
Características del Wizard MQL5 que debe conocer (Parte 56): Fractales de Bill Williams

Características del Wizard MQL5 que debe conocer (Parte 56): Fractales de Bill Williams

Los fractales de Bill Williams son un indicador potente que es fácil pasar por alto cuando se ve por primera vez en un gráfico de precios. Parece demasiado recargado y probablemente no lo suficientemente incisivo. Nuestro objetivo es desvelar este indicador examinando lo que sus diversos patrones podrían lograr cuando se analizan con pruebas de avance en todos los casos, con un asesor experto creado por un asistente.
preview
Implementación de un modelo de tabla en MQL5: Aplicación del concepto MVC (Modelo-Vista-Controlador)

Implementación de un modelo de tabla en MQL5: Aplicación del concepto MVC (Modelo-Vista-Controlador)

En este artículo, analizamos el proceso de desarrollo de un modelo de tabla en MQL5 utilizando el patrón arquitectónico MVC (Modelo-Vista-Controlador) para separar la lógica de datos, la presentación y el control, lo que permite obtener un código estructurado, flexible y escalable. Consideramos la implementación de clases para construir un modelo de tabla, incluyendo el uso de listas enlazadas para almacenar datos.
preview
Kit de herramientas de negociación MQL5 (Parte 8): Cómo implementar y utilizar la librería History Manager en sus proyectos

Kit de herramientas de negociación MQL5 (Parte 8): Cómo implementar y utilizar la librería History Manager en sus proyectos

Descubra cómo importar y utilizar sin esfuerzo la librería History Manager en su código MQL5 para procesar los historiales de operaciones en su cuenta MetaTrader 5 en el último artículo de esta serie. Con simples llamadas a funciones de una sola línea en MQL5, puede gestionar y analizar de forma eficaz sus datos de trading. Además, aprenderá a crear diferentes scripts de análisis del historial comercial y a desarrollar un asesor experto basado en precios como ejemplos prácticos de uso. El EA de ejemplo aprovecha los datos de precios y la librería History Manager para tomar decisiones de trading informadas, ajustar los volúmenes de operaciones e implementar estrategias de recuperación basadas en operaciones cerradas anteriormente.
preview
Algoritmo de optimización caótica — Chaos optimization algorithm (COA)

Algoritmo de optimización caótica — Chaos optimization algorithm (COA)

Hoy hablaremos de un algoritmo de optimización caótica (COA) mejorado, que combina los efectos del caos con mecanismos de búsqueda adaptativos. El algoritmo usa un conjunto de mapeos caóticos y componentes inerciales para explorar el espacio de búsqueda. El artículo revela los fundamentos teóricos de los métodos caóticos de optimización financiera.
preview
Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)

Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)

Los búferes de reproducción en el aprendizaje por refuerzo son especialmente importantes con algoritmos fuera de política como DQN o SAC. Esto pone entonces el foco en el proceso de muestreo de este búfer de memoria. Mientras que las opciones predeterminadas con SAC, por ejemplo, utilizan una selección aleatoria de este búfer, los búferes de reproducción de experiencia priorizada ajustan esto mediante un muestreo del búfer basado en una puntuación TD. Repasamos la importancia del aprendizaje por refuerzo y, como siempre, examinamos solo esta hipótesis (no la validación cruzada) en un asesor experto creado por un asistente.
preview
Optimización de arrecifes de coral — Coral Reefs Optimization (CRO)

Optimización de arrecifes de coral — Coral Reefs Optimization (CRO)

Este artículo presenta un análisis exhaustivo del algoritmo de optimización de arrecifes de coral (CRO), un método metaheurístico inspirado en los procesos biológicos de formación y desarrollo de los arrecifes de coral. El algoritmo modela aspectos clave de la evolución de los corales: la reproducción externa e interna, el asentamiento de larvas, la reproducción asexual y la competencia por un espacio limitado en el arrecife. El artículo se centra en una versión mejorada del algoritmo.
preview
Trading por pares: negociación algorítmica con optimización automática en la diferencia de puntuación Z

Trading por pares: negociación algorítmica con optimización automática en la diferencia de puntuación Z

En este artículo, veremos qué es el trading por pares y cómo se realiza el comercio de correlaciones. También crearemos un asesor experto para automatizar el trading por pares y añadiremos la capacidad de optimizar automáticamente dicho algoritmo comercial a partir de los datos históricos. Además, como parte del proyecto, aprenderemos a calcular la divergencia de dos pares utilizando la puntuación z.
preview
Simulación de mercado (Parte 17): Sockets (X)

Simulación de mercado (Parte 17): Sockets (X)

Implementar la parte que se ejecutará aquí en MetaTrader 5 no es complicado. Pero hay diversos aspectos a los que hay que prestar atención. Esto es para que tú, querido lector, consigas hacer que el sistema funcione de verdad. Recuerda una cosa: no se ejecutará un único programa. En realidad, estarás ejecutando tres programas a la vez. Es importante que cada uno se implemente y se construya de forma que trabajen y se comuniquen entre sí. Es crucial que cada uno sepa qué está intentando o deseando hacer el otro.
preview
Algoritmo de optimización caótica — Chaos optimization algorithm (COA): Continuación

Algoritmo de optimización caótica — Chaos optimization algorithm (COA): Continuación

Continuamos el estudio del algoritmo de optimización caótica. La segunda parte del artículo está dedicada a los aspectos prácticos de la implementación del algoritmo, sus pruebas y conclusiones.
preview
Simulación de mercado (Parte 19): Iniciando SQL (II)

Simulación de mercado (Parte 19): Iniciando SQL (II)

Como expliqué en el primer artículo sobre SQL, no tiene sentido que pierdas el tiempo programando rutinas para conseguir hacer algo que SQL ya incluye. Sin embargo, si no sabes lo más básico, no lograrás hacer nada con SQL para aprovechar lo que esta herramienta tiene para ofrecernos. Por ello, en este artículo veremos cómo ejecutar tareas fundamentales en bases de datos.
preview
Simulación de mercado (Parte 18): Iniciando SQL (I)

Simulación de mercado (Parte 18): Iniciando SQL (I)

Da igual si vamos a usar uno u otro programa de SQL, ya sea MySQL, SQL Server, SQLite, OpenSQL o cualquier otro. Todos tienen algo en común. Ese algo en común es el lenguaje SQL. Aunque no vayas a usar una WorkBench, podrás manipular o trabajar con una base de datos directamente en MetaEditor o a través de MQL5 para hacer cosas en MetaTrader 5, pero necesitarás tener conocimientos de SQL. Así que aquí aprenderemos, al menos, lo básico.
preview
Simulación de mercado (Parte 20): Iniciando el SQL (III)

Simulación de mercado (Parte 20): Iniciando el SQL (III)

Aunque podemos hacer cosas con una base de datos de unas 10 entradas, esto se asimila mucho mejor cuando trabajamos con un archivo que tenga más de 15 mil registros. Es decir, si tú intentaras crear eso manualmente, sería una tarea enorme. Sin embargo, es difícil encontrar una base de datos, incluso con fines didácticos, disponible para descargar. Pero, en realidad, no necesitamos recurrir a eso. Podemos usar MetaTrader 5 para crear una base de datos para nosotros. En este artículo, veremos cómo hacerlo.
preview
Simulación de mercado (Parte 21): Iniciando SQL (IV)

Simulación de mercado (Parte 21): Iniciando SQL (IV)

Muchos de ustedes, queridos lectores, pueden tener un nivel de experiencia muy superior al mío en lo que respecta a trabajar con bases de datos y, así, por esta razón, tener una visión diferente de la mía. Pero, como era necesario definir y desarrollar alguna forma de explicar el motivo por el cual las bases de datos se crean como se crean, explicar por qué SQL tiene el formato que tiene y, sobre todo, por qué surgieron las claves primarias y las claves foráneas, fue necesario dejar las cosas un poco abstractas.
preview
Trading de arbitraje en Forex: Sistema comercial matricial para retornar al valor justo con limitación del riesgo

Trading de arbitraje en Forex: Sistema comercial matricial para retornar al valor justo con limitación del riesgo

El artículo contiene una descripción detallada del algoritmo de cálculo de tipos cruzados, una visualización de la matriz de desequilibrios y recomendaciones para configurar de manera óptima los parámetros MinDiscrepancy y MaxRisk para un trading efectivo. El sistema calcula automáticamente el "valor justo" de cada par de divisas usando tipos de cambio cruzados, generando señales de compra para las desviaciones negativas y señales de venta para las desviaciones positivas.