
Del básico al intermedio: Indicador (II)
En este artículo, veremos cómo implementar el cálculo de una media móvil y qué precauciones debemos tomar al realizar este cálculo. También hablaremos sobre la sobrecarga de la función OnCalculate para saber cuándo y cómo trabajar con un modelo u otro.

Del básico al intermedio: Eventos (II)
En este artículo veremos que no siempre es necesario implementar las cosas de una u otra manera. Existen formas alternativas de hacer las cosas. Comprender los conceptos explicados en artículos anteriores es primordial para entender adecuadamente el contenido de este artículo. El contenido expuesto aquí tiene como objetivo único y exclusivo la didáctica. En ningún caso debe considerarse una aplicación final, en la que el objetivo no sea el estudio de los conceptos aquí mostrados.

Creación de un Panel de Administración de Operaciones en MQL5 (Parte V): Panel de Gestión de Operaciones (II)
En este artículo, mejoraremos el Panel de Gestión Comercial de nuestro Panel de Administración multifuncional. Hoy introduciremos una potente función de ayuda que simplificará el código, mejorando su legibilidad, su mantenimiento y su eficiencia. También demostraremos cómo integrar sin problemas botones adicionales y mejorar la interfaz para gestionar una gama más amplia de tareas de negociación. Ya sea para gestionar posiciones, ajustar órdenes o simplificar las interacciones de los usuarios, esta guía le ayudará a desarrollar un panel de gestión de operaciones sólido y sencillo de usar.

Creación de un Panel de administración de operaciones en MQL5 (Parte VI): Interfaz de múltiples funciones (I)
La función del administrador de operaciones va más allá de las comunicaciones por Telegram; también puede participar en diversas actividades de control, como la gestión de órdenes, el seguimiento de posiciones y la personalización de interfaces. En este artículo, compartiremos información práctica sobre cómo ampliar nuestro programa para admitir múltiples funcionalidades en MQL5. Esta actualización tiene como objetivo superar la limitación actual del Panel de administración, que se centra principalmente en la comunicación, permitiéndole gestionar una gama más amplia de tareas.

Del básico al intermedio: Indicador (I)
En este artículo, crearemos nuestro primer indicador, que será totalmente práctico y funcional. El objetivo no es mostrar cómo se crea una aplicación, sino ayudarte a entender cómo puedes desarrollar tus propias ideas. El objetivo es que puedas ponerlas en práctica de forma segura, simple y práctica.

Redes neuronales en el trading: Agente con memoria multinivel (Final)
Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.

Operar con el Calendario Económico MQL5 (Parte 2): Creación de un Panel de Noticias
En este artículo, creamos un panel de noticias práctico utilizando el Calendario Económico MQL5 para mejorar nuestra estrategia comercial. Comenzamos diseñando el diseño, centrándonos en elementos clave como los nombres de los eventos, la importancia y el tiempo, antes de pasar a la configuración dentro de MQL5. Por último, implementamos un sistema de filtrado para mostrar sólo las noticias más relevantes, brindando a los operadores acceso rápido a eventos económicos impactantes.

Del básico al intermedio: Eventos (I)
Con todo lo que se ha mostrado hasta ahora, creo que ya podemos comenzar a implementar algún tipo de aplicación para ejecutarla directamente en el gráfico de algún símbolo. Aunque, antes de poder hacer esto, necesitamos hablar de algo que resulta bastante confuso para los principiantes: el hecho de que las aplicaciones desarrolladas en MQL5 y destinadas a visualizarse en un gráfico no se crean del mismo modo que hemos visto hasta ahora. En este artículo, empezaremos a entenderlo un poco mejor.

Modelos polinómicos en el trading
Este artículo trata sobre los polinomios ortogonales. Su uso puede suponer la base de un análisis más preciso y eficaz de la información del mercado, de modo que el tráder pueda tomar decisiones más informadas.

Del básico al intermedio: Struct (I)
¿Qué te parece si empezamos a estudiar las estructuras de una forma más simple, práctica y agradable? Y es que las estructuras son uno de los fundamentos de la programación, ya sea estructurada o no. Sé que muchos piensan que las estructuras son solo colecciones de datos, pero te aseguro que son mucho más que eso. Y aquí empezaremos a explorar este nuevo universo de la manera más didáctica posible.

Del básico al intermedio: Plantilla y Typename (V)
En este artículo, veremos un último caso simple de uso de plantillas, pero también veremos cuál es la utilidad y por qué la necesidad de utilizar typename en tus códigos. Aunque este artículo pueda parecer un tanto complicado al principio, es necesario comprenderlo adecuadamente para que futuras aplicaciones que utilicen plantilla y typename, sean, de hecho, comprendidas.

Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)
El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.

Redes neuronales en el trading: Agente con memoria multinivel
Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.

Del básico al intermedio: Struct (II)
En este artículo, vamos entender por qué se crearon estructuras en lenguajes de programación como MQL5, así como también por qué, en algunos momentos, las estructuras son formas ideales de transferir valores entre funciones y procedimientos, mientras que, en otros momentos, pueden no ser la mejor forma de hacerlo.

Algoritmo de Big Bang y Big Crunch
En el presente artículo, le presentamos el método Big Bang - Big Crunch, que consta de dos fases clave: la creación cíclica de puntos aleatorios y su compresión hasta una solución óptima. Este enfoque combina exploración y refinamiento, lo cual permite encontrar soluciones progresivamente mejores y descubre nuevas oportunidades en el campo de la optimización.

Selección de características paso a paso en MQL5
En este artículo, presentamos una versión modificada de la selección de características paso a paso, implementada en MQL5. Este enfoque se basa en las técnicas descritas en Algoritmos modernos de minería de datos en C++ y CUDA C de Timothy Masters.

Del básico al intermedio: Plantilla y Typename (IV)
En este artículo, veremos de forma muy didáctica cómo resolver el problema que se planteó al final del artículo anterior. Allí se intentaba crear una plantilla de tipo para poder crear una plantilla de una unión de datos.

Indicador de fuerza y dirección de la tendencia en barras 3D
Hoy estudiaremos un nuevo enfoque del análisis de las tendencias del mercado basado en la visualización tridimensional y el análisis tensorial de la microestructura del mercado.

Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)
Las medias móviles y el oscilador estocástico podrían utilizarse para generar señales de trading que sigan la tendencia. Sin embargo, estas señales solo se observarán después de que se haya producido la acción del precio. Podemos superar eficazmente este retraso inherente a los indicadores técnicos utilizando la inteligencia artificial. Este artículo le enseñará cómo crear un asesor experto totalmente autónomo impulsado por IA de una manera que pueda mejorar cualquiera de sus estrategias de trading existentes. Incluso la estrategia comercial más antigua posible se puede mejorar.

Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)
En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.

Ingeniería de características con Python y MQL5 (Parte II): El ángulo del precio
Hay muchas publicaciones en el foro MQL5 pidiendo ayuda para calcular la pendiente de los cambios de precios. Este artículo demostrará una forma posible de calcular el ángulo formado por los cambios de precio en cualquier mercado en el que desee operar. Además, responderemos si vale la pena invertir el esfuerzo y el tiempo extra para diseñar esta nueva característica. Exploraremos si la pendiente del precio puede mejorar la precisión de nuestro modelo de IA al pronosticar el par USDZAR en M1.

Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea
Le proponemos familiarizarse con un framework que combina la transformada de wavelet y el modelo multitarea Self-Attention con el objetivo de mejorar la capacidad de respuesta y la precisión de las previsiones en condiciones de mercado volátiles. La transformada de wavelet descompone los rendimientos de los activos en frecuencias altas y bajas, captando cuidadosamente las tendencias del mercado a largo plazo y las fluctuaciones a corto plazo.

Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)
Este artículo ampliará la clase de gestión de operaciones para incluir órdenes de compra y venta con límite (buy-stop y sell-stop) con el fin de operar con eventos de noticias e implementar una restricción de vencimiento en estas órdenes para evitar cualquier operación nocturna. Se incorporará una función de deslizamiento (slippage) al experto para intentar prevenir o minimizar el posible deslizamiento que puede producirse al utilizar órdenes stop en las operaciones, especialmente durante eventos noticiosos.

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (Final)
Continuamos nuestro análisis del sistema comercial híbrido StockFormer, que combina codificación predictiva y algoritmos de aprendizaje por refuerzo para el análisis de series temporales financieras. El sistema se basa en tres ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) que permite identificar patrones complejos y relaciones entre activos. Ya nos hemos familiarizado con los aspectos teóricos del framework e implementado los mecanismos de DMH-Attn, así que hoy hablaremos sobre la arquitectura de los modelos y su entrenamiento.

Análisis de múltiples símbolos con Python y MQL5 (Parte II): Análisis de componentes principales para la optimización de carteras
La gestión del riesgo de las cuentas de trading es un reto para todos los operadores. ¿Cómo podemos desarrollar aplicaciones de trading que aprendan dinámicamente los modos de riesgo alto, medio y bajo para diversos símbolos en MetaTrader 5? Al utilizar el Análisis de Componentes Principales (Principal Components Analysis, PCA), obtenemos un mejor control sobre la variación de la cartera. Demostraré cómo crear aplicaciones que aprendan estos tres modos de riesgo a partir de datos de mercado obtenidos de MetaTrader 5.

Algoritmo de agujero negro — Black Hole Algorithm (BHA)
El algoritmo de agujero negro (BHA) utiliza los principios de la gravedad de los agujeros negros para optimizar las soluciones. En este artículo, analizaremos cómo el BHA atrae las mejores soluciones evitando los extremos locales, y por qué este algoritmo se ha convertido en una poderosa herramienta para resolver problemas complejos. Descubra cómo ideas sencillas pueden dar lugar a resultados impresionantes en el mundo de la optimización.

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte VI): Cómo aprovechar el doble descenso profundo
El aprendizaje automático tradicional enseña a los profesionales a estar atentos para no sobreajustar sus modelos. Sin embargo, esta ideología está siendo cuestionada por nuevos hallazgos publicados por diligentes investigadores de Harvard, quienes han descubierto que lo que parece ser un sobreajuste puede, en algunas circunstancias, ser el resultado de finalizar prematuramente los procedimientos de entrenamiento. Demostraremos cómo podemos utilizar las ideas publicadas en el artículo de investigación para mejorar nuestro uso de la IA en la previsión de retornos del mercado.

Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos
Hoy desarrollaremos un sistema comercial modular que combina Python para el análisis de datos con MQL5 para la ejecución de transacciones. Sus cuatro módulos independientes supervisan en paralelo distintos aspectos del mercado: volúmenes, arbitraje, economía y riesgo, y utilizan RandomForest con 400 árboles para el análisis. Se hace especial hincapié en la gestión del riesgo, porque sin una gestión eficaz del riesgo, ni siquiera los algoritmos comerciales más avanzados sirven de mucho.

Ingeniería de características con Python y MQL5 (Parte I): Predicción de medias móviles para modelos de IA de largo plazo
Las medias móviles son, con diferencia, los mejores indicadores para que nuestros modelos de IA realicen predicciones. Sin embargo, podemos mejorar aún más nuestra precisión transformando cuidadosamente nuestros datos. Este artículo le mostrará cómo puede crear modelos de IA capaces de realizar previsiones a más largo plazo que las que realiza actualmente sin que ello suponga una disminución significativa de su nivel de precisión. Es realmente sorprendente lo útiles que son las medias móviles.

Criterios de tendencia en el trading
Las tendencias son una parte importante de muchas estrategias comerciales. En este artículo analizaremos algunas de las herramientas utilizadas para identificar tendencias y sus características. Comprender e interpretar correctamente las tendencias puede mejorar sustancialmente los resultados comerciales y minimizar los riesgos.

Algoritmo de Tribu Artificial (Artificial Tribe Algorithm, ATA)
Este artículo detalla los componentes clave y las innovaciones del algoritmo de optimización ATA, un método evolutivo con un sistema de comportamiento dual único que se adapta según la situación. Usando el cruce para la exploración en profundidad y la migración para la búsqueda cuando se dan atascos en óptimos locales, el ATA combina el aprendizaje individual y el social.

Solicitudes en Connexus (Parte 6): Creación de una solicitud y respuesta HTTP
En este sexto artículo de la serie de la biblioteca Connexus, nos centraremos en una solicitud HTTP completa, cubriendo cada componente que la conforma. Crearemos una clase que represente la solicitud en su conjunto, lo que nos ayudará a reunir las clases creadas anteriormente.

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)
Hoy le presentamos el StockFormer, un sistema comercial híbrido que combina algoritmos de codificación predictiva y de aprendizaje por refuerzo (RL). El framework utiliza 3 ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) integrado que mejora el módulo de atención vainilla gracias a un bloque Feed-Forward multicabeza que permite captar diversos patrones de series temporales en diferentes subespacios.

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).

Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)
En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.

Características del Wizard MQL5 que debe conocer (Parte 45): Aprendizaje por refuerzo con Monte-Carlo
Monte-Carlo es el cuarto algoritmo diferente de aprendizaje por refuerzo que estamos considerando con el objetivo de explorar su implementación en los asesores expertos ensamblados por el asistente. Aunque se basa en el muestreo aleatorio, ofrece numerosas posibilidades de simulación que podemos aprovechar.

Redes neuronales en el trading: Conjunto de agentes con mecanismos de atención (MASAAT)
Hoy le presentamos la estructura multiagente adaptativa de optimización de portafolios (MASAAT), que combina mecanismos de atención y análisis de series temporales. El MASAAT genera un conjunto de agentes que analizan series de precios y cambios direccionales, permitiendo identificar fluctuaciones sustanciales en los precios de los activos a diferentes niveles de detalle.

Asesor experto basado en un aproximador MLP universal
El artículo presenta una forma sencilla y asequible de usar redes neuronales en un asesor comercial que no requiere conocimientos profundos en aprendizaje automático. El método excluye la normalización de la función objetivo y elimina los problemas de "explosión de pesos" y "estupor de la red", posibilitando un aprendizaje intuitivo y un control visual de los resultados.

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (II)
El número de estrategias que se pueden integrar en un Asesor Experto es prácticamente ilimitado. Sin embargo, cada estrategia adicional aumenta la complejidad del algoritmo. Al incorporar múltiples estrategias, un Asesor Experto puede adaptarse mejor a las condiciones cambiantes del mercado, lo que puede mejorar su rentabilidad. Hoy exploraremos cómo implementar MQL5 para una de las estrategias más destacadas desarrolladas por Richard Donchian, mientras continuamos mejorando la funcionalidad de nuestro Asesor Experto Trend Constraint.

Explorando la criptografía en MQL5: Un enfoque paso a paso
Este artículo analiza la integración de la criptografía en MQL5, mejorando la seguridad y la funcionalidad de los algoritmos de trading. Cubriremos los métodos criptográficos clave y su aplicación práctica en el comercio automatizado.