Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 6): Prevención del cierre de posiciones
Únase a nuestro debate de hoy, en el que buscaremos un procedimiento algorítmico para minimizar el número total de veces que nos detienen en operaciones ganadoras. El problema al que nos enfrentamos es muy complejo, y la mayoría de las soluciones que se plantean en los debates comunitarios carecen de normas establecidas y fijas. Nuestro enfoque algorítmico para resolver el problema aumentó la rentabilidad de nuestras operaciones y redujo nuestra pérdida media por operación. Sin embargo, aún quedan avances por realizar para filtrar completamente todas las operaciones que se detendrán. Nuestra solución es un buen primer paso que cualquiera puede probar.
Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Cliente en Connexus (Parte 7): Añadir la capa de cliente
En este artículo continuamos con el desarrollo de la biblioteca Connexus. En este capítulo creamos la clase CHttpClient, responsable de enviar una solicitud y recibir un orden. También cubrimos el concepto de simulaciones, dejando la biblioteca desacoplada de la función WebRequest, lo que permite una mayor flexibilidad para los usuarios.
Aprendizaje automático y Data Science (Parte 33): Pandas Dataframe en MQL5, recopilación de datos para facilitar el uso de ML
Cuando se trabaja con modelos de aprendizaje automático, es esencial garantizar la coherencia de los datos utilizados para el entrenamiento, la validación y las pruebas. En este artículo, crearemos nuestra propia versión de la biblioteca Pandas en MQL5 para garantizar un enfoque unificado para el manejo de datos de aprendizaje automático, con el fin de asegurar que se apliquen los mismos datos dentro y fuera de MQL5, donde se lleva a cabo la mayor parte del entrenamiento.
Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)
Este artículo presenta el algoritmo de campo eléctrico artificial (AEFA) inspirado en la ley de Coulomb de la fuerza electrostática. El algoritmo modela fenómenos eléctricos para resolver problemas de optimización complejos usando partículas cargadas y las interacciones de estas. El AEFA presenta propiedades únicas en el contexto de otros algoritmos relacionados con las leyes de la naturaleza.
Simulación de mercado (Parte 05): Creación de la clase C_Orders (II)
En este artículo, explicaré cómo Chart Trade, junto con el asesor experto, gestionará la solicitud de cierre de todas las posiciones abiertas del usuario. Parece sencillo, pero hay algunos factores que complican la situación y que es necesario saber gestionar.
Del básico al intermedio: Arrays y cadenas (II)
En este artículo, demostraré que, aunque aún estamos en una fase inicial y muy básica, ya podemos implementar alguna aplicación interesante. En este caso, crearemos un generador de contraseñas bastante sencillo. Así podremos aplicar algunos de los conceptos explicados hasta ahora. Además, mostraré cómo se pueden desarrollar soluciones para algunos problemas específicos.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 5): Reglas de negociación autoadaptativas
Las mejores prácticas, que definen cómo utilizar un indicador de forma segura, no siempre son fáciles de seguir. Las condiciones de mercado tranquilas pueden producir, sorprendentemente, lecturas en el indicador que no califican como señal de negociación, lo que conlleva la pérdida de oportunidades para los operadores algorítmicos. Este artículo propondrá una posible solución a este problema, al analizar cómo construir aplicaciones de negociación capaces de adaptar sus reglas de negociación a los datos de mercado disponibles.
Optimización por herencia sanguínea — Blood inheritance optimization (BIO)
Les presento mi nuevo algoritmo basado en la población, el BIO (Blood Inheritance Optimization), inspirado en el sistema de herencia del grupo sanguíneo humano. En este algoritmo, cada solución tiene un "grupo sanguíneo" distinto que determina su forma de evolucionar. Al igual que en la naturaleza, el grupo sanguíneo de un niño se hereda según reglas específicas, en el BIO las nuevas soluciones obtienen sus características mediante un sistema de herencia y mutaciones.
Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)
En este archivo, resolveremos por fin los problemas de simulación de los ticks en una barra de un minuto, de manera que puedan coexistir con ticks reales. De esta manera, evitaremos enfrentarnos a problemas en el futuro. El contenido expuesto aquí tiene como único objetivo la didáctica. En ningún caso debe interpretarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Características del Wizard MQL5 que debe conocer (Parte 28): Revisión de las GAN con una introducción a las tasas de aprendizaje
La Tasa de Aprendizaje, es un tamaño de paso hacia un objetivo de entrenamiento en muchos procesos de entrenamiento de algoritmos de aprendizaje automático. Examinamos el impacto que sus múltiples horarios y formatos pueden tener en el rendimiento de una Red Generativa Adversarial, un tipo de red neuronal que ya habíamos examinado en un artículo anterior.
Del básico al intermedio: Array (III)
En este artículo, veremos cómo trabajar con arrays en MQL5, hasta el punto de transferir información entre funciones y procedimientos mediante arrays. El objetivo es prepararte para lo que se verá y explicará en artículos futuros. No obstante, es extremadamente recomendable que estudies muy bien lo que se mostrará en este artículo.
Del básico al intermedio: Array (IV)
En este artículo, veremos cómo podemos hacer algo muy parecido a lo que se encuentra en lenguajes como C, C++ y Java. Se trata de enviar un número casi infinito de parámetros dentro de una función o procedimiento. Aunque, aparentemente, se trate de un tema avanzado. En mi opinión, lo que se verá aquí puede ser implementado con facilidad por cualquier persona que haya comprendido los conceptos anteriores. Siempre y cuando se hayan comprendido los conceptos vistos anteriormente. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)
En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
Desarrollo de un sistema de repetición (Parte 67): Refinando el indicador de control
En este artículo, mostraré lo que un poco de refinamiento en el código es capaz de lograr. Dicho refinamiento tiene como objetivo simplificar nuestro código, hacer un mayor uso de las llamadas a la biblioteca de MQL5 y, sobre todo, conseguir que sea mucho más estable, seguro y fácil de usar en otros códigos que desarrollemos en el futuro. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos mostrados.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 11): EA de señales Heikin Ashi
MQL5 ofrece infinitas oportunidades para desarrollar sistemas de trading automatizados adaptados a sus preferencias. ¿Sabías que incluso puede realizar cálculos matemáticos complejos? En este artículo, presentamos la técnica japonesa Heikin-Ashi como una estrategia de trading automatizada.
Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)
Llevamos bastante tiempo trabajando únicamente con los indicadores. Pero ahora ha llegado el momento de hacer que el servicio vuelva a ejecutar su trabajo y podamos ver el gráfico construyéndose con los datos proporcionados. Sin embargo, como no todo es tan simple, será necesario observar para entender lo que nos espera.
Métodos de discretización de los movimientos de precios en Python
Hoy analizaremos varios métodos de discretización de precios en Python + MQL5. En este artículo compartiré mi experiencia práctica en el desarrollo de una biblioteca Python que implementa toda una gama de enfoques para la formación de barras: desde las clásicas Volume y Range bars hasta métodos más exóticos como Renko y Kagi, velas de ruptura de tres líneas, barras de Rango; ¿cuáles son sus estadísticas, de qué otra forma se pueden representar los precios de forma discreta?
Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)
Hoy les propongo familiarizarse con el MASA, un framework adaptativo multiagente que combina el aprendizaje por refuerzo y las estrategias adaptativas para ofrecer un equilibrio armonioso entre la rentabilidad y la gestión del riesgo en condiciones de mercado turbulentas.
Dominando los registros (Parte 3): Exploración de controladores para guardar registros
En este artículo, exploraremos el concepto de controladores en la librería de registro, comprenderemos cómo funcionan y crearemos tres implementaciones iniciales: Console, Database y File. Cubriremos todo, desde la estructura básica de los controladores hasta las pruebas prácticas, preparando el terreno para su plena funcionalidad en futuros artículos.
Ingeniería de características con Python y MQL5 (Parte III): El ángulo del precio (2) Coordenadas polares
En este artículo, hacemos nuestro segundo intento de convertir los cambios en los niveles de precios de cualquier mercado en un cambio correspondiente en el ángulo. En esta ocasión, seleccionamos un enfoque matemáticamente más sofisticado que el que elegimos en nuestro primer intento, y los resultados obtenidos sugieren que nuestro cambio de enfoque puede haber sido la decisión correcta. Únase a nosotros hoy para debatir cómo podemos utilizar las coordenadas polares para calcular el ángulo formado por los cambios en los niveles de precios, de una manera significativa, independientemente del mercado que esté analizando.
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Final)
Seguimos integrando en los modelos comerciales los métodos propuestos por los autores del framework Attraos. Recordemos que este framework usa conceptos de la teoría del caos para resolver problemas de previsión de series temporales, interpretándolos como proyecciones de sistemas dinámicos caóticos multidimensionales.
Operaciones de arbitraje en Forex: Panel de evaluación de correlaciones
Hoy analizaremos la creación de un panel de arbitraje en el lenguaje MQL5. ¿Cómo obtener tipos de cambio justos en Forex de formas diferentes? En esta ocasión, crearemos un indicador para obtener las desviaciones de los precios de mercado respecto a los tipos justos, y para estimar el beneficio de las vías de arbitraje para cambiar una divisa por otra (como en el arbitraje triangular).
Métodos de ensamble para mejorar predicciones numéricas en MQL5
En este artículo presentamos la implementación de varios métodos de aprendizaje por ensamble en MQL5 y examinamos su efectividad en distintos escenarios.
Simulación de mercado (Parte 08): Sockets (II)
¿Qué te parece si creamos algo práctico con sockets? Bien, en este artículo empezaremos a crear un minichat. Acompáñanos y descubre cómo se hace, porque será algo bastante interesante. Recuerda que el código que se mostrará aquí tiene un objetivo puramente didáctico. En realidad, no deberías utilizar este código con fines comerciales ni en una aplicación finalizada, ya que no cuenta con ningún tipo de seguridad en la transmisión de datos y es posible ver el contenido que se está transportando a través del socket.
Simulación de mercado (Parte 15): Sockets (IX)
En este artículo, explicaré una de las posibles soluciones a lo que he estado intentando mostrar. Es decir, cómo permitir que un usuario de Excel realice una acción en MetaTrader 5 sin enviar órdenes ni abrir o cerrar una posición. La idea es que el usuario utilice Excel para realizar un análisis fundamental de algún símbolo. Y que, usando únicamente Excel, pueda indicar a un Asesor Experto que se esté ejecutando en MetaTrader 5 que debe abrir o cerrar una posición determinada.
Del básico al intermedio: Definiciones (II)
En este artículo, veremos y exploraremos un poco más sobre la directiva #define, pero esta vez nos centraremos en su segunda forma de utilización. Es decir, la creación de macros. Como sé que este tema puede resultar un poco complicado al principio, he decidido utilizar una aplicación que ya hemos estado explorando desde hace algún tiempo. Espero que disfrutes del contenido de este artículo.
Algoritmo de optimización del billar — Billiards Optimization Algorithm (BOA)
El método BOA, inspirado en el clásico juego del billar, modela el proceso de búsqueda de soluciones óptimas como un juego de bolas que intentan acertar en las troneras que representan los mejores resultados. En este artículo revisaremos los fundamentos del BOA, su modelo matemático y su eficacia para resolver diversos problemas de optimización.
Del básico al intermedio: Comando FOR
En este artículo hablaremos de los conceptos más básicos sobre el comando FOR. Todo lo que se mostrará aquí debe asimilarse y comprenderse a fondo. A diferencia de otros comandos que hemos tratado anteriormente, este comando FOR tiene ciertas peculiaridades que lo hacen muy complejo con rapidez. Así que, querido lector, no permitas que este tipo de material se acumule. Comienza a estudiarlo y practicarlo cuanto antes. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.
Redefiniendo los indicadores de MQL5 y MetaTrader 5
Un enfoque innovador para recopilar información de indicadores en MQL5 que permite un análisis de datos más flexible y optimizado, al permitir a los desarrolladores pasar entradas personalizadas a los indicadores para realizar cálculos inmediatos. Este enfoque resulta especialmente útil para el trading algorítmico, ya que proporciona un mayor control sobre la información procesada por los indicadores, superando las limitaciones tradicionales.
Redes neuronales en el trading: Aprendizaje multitarea basado en el modelo ResNeXt (Final)
Continuamos nuestra exploración del framework de aprendizaje multitarea basado en ResNeXt, que destaca por su modularidad, su alta eficiencia desde el punto de vista computacional y su capacidad de identificar patrones consistentes en los datos. El uso de un único codificador y de "cabezas" especializadas reduce el riesgo de sobreentrenamiento del modelo y mejora la calidad de las predicciones.
Desarrollamos un asesor experto multidivisas (Parte 22): Inicio de la transición a la sustitución dinámica de ajustes
Si hemos empezado a automatizar la optimización periódica, también deberíamos ocuparnos de la actualización automática de los ajustes de los asesores expertos que ya están trabajando en la cuenta comercial. También deberíamos permitirle ejecutar un asesor experto en el simulador de estrategias y cambiar su configuración en una sola pasada.
Analizamos el código binario de los precios en bolsa (Parte II): Convirtiendo a BIP39 y escribiendo un modelo GPT
Seguimos intentando descifrar los movimientos de los precios.... ¿Qué tal un análisis lingüístico del "diccionario de mercado" que obtendríamos convirtiendo el código binario de precios en BIP39? En el presente artículo, nos adentramos en un enfoque innovador del análisis de los datos bursátiles y exploramos cómo pueden aplicarse las modernas técnicas de procesamiento del lenguaje natural al lenguaje del mercado.
Redes generativas antagónicas (GAN) para datos sintéticos en modelos financieros (Parte 2): Creación de símbolos sintéticos para pruebas
En este artículo creamos un símbolo sintético utilizando una red generativa adversaria (Generative Adversarial Networks, GAN), lo que implica generar datos financieros realistas que imitan el comportamiento de instrumentos de mercado reales, como el EURUSD. El modelo GAN aprende patrones y volatilidad a partir de datos históricos del mercado y crea datos sintéticos de precios con características similares.
Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento
Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.
Cierres parciales condicionales (Parte 1): Creación de la clase base
En este artículo implementaremos un nuevo método para la gestión de posiciones, parecido a los cierres parciales "simples" que implementamos anteriormente, pero con una diferencia importante. En lugar de basarse en niveles de takeprofit fijos, este enfoque aplica los cierres parciales al momento de cumplirse cierta condición específica. De ahí su nombre: "Cierres parciales condicionales". En esta primera parte de la implementación en MQL5 veremos cómo funciona esta técnica de gestión de posiciones.
Solicitudes en Connexus (Parte 6): Creación de una solicitud y respuesta HTTP
En este sexto artículo de la serie de la biblioteca Connexus, nos centraremos en una solicitud HTTP completa, cubriendo cada componente que la conforma. Crearemos una clase que represente la solicitud en su conjunto, lo que nos ayudará a reunir las clases creadas anteriormente.
Kit de herramientas de negociación MQL5 (Parte 7): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente cancelada
Aprenda a completar la creación del módulo final en la librería History Manager EX5, centrándose en las funciones responsables de gestionar la orden pendiente cancelada más recientemente. Esto le proporcionará las herramientas necesarias para recuperar y almacenar de manera eficiente los detalles clave relacionados con las órdenes pendientes canceladas con MQL5.
Automatización de estrategias de trading en MQL5 (Parte 9): Creación de un asesor experto para la estrategia de ruptura asiática
En este artículo, creamos un Asesor Experto en MQL5 para la estrategia de ruptura asiática calculando los máximos y mínimos de la sesión y aplicando un filtro de tendencia con una media móvil. Implementamos estilos dinámicos para objetos, entradas de tiempo definidas por el usuario y una sólida gestión de riesgos. Por último, mostramos técnicas de pruebas retrospectivas y optimización para perfeccionar el sistema.