Características del Wizard MQL5 que debe conocer (Parte 14): Previsión multiobjetivo de series temporales con STF
La fusión espacio-temporal, que utiliza métricas espaciales y temporales en la modelización de datos, es útil sobre todo en teledetección y otras muchas actividades visuales para comprender mejor nuestro entorno. Gracias a un artículo publicado, adoptamos un enfoque novedoso en su uso examinando su potencial para los comerciantes.
Redes neuronales: así de sencillo (Parte 96): Extracción multinivel de características (MSFformer)
Extraer y combinar eficazmente las dependencias a largo plazo y las características a corto plazo sigue siendo una tarea importante en el análisis de series temporales. Para crear modelos predictivos precisos y fiables deberemos comprender e integrar estos adecuadamente.
Observador de Connexus (Parte 8): Cómo agregar un observador de solicitudes
En esta última entrega de nuestra serie de bibliotecas Connexus, exploramos la implementación del patrón Observer, así como refactorizaciones esenciales de rutas de archivos y nombres de métodos. Esta serie cubrió todo el desarrollo de Connexus, diseñado para simplificar la comunicación HTTP en aplicaciones complejas.
Dominando las operaciones con archivos en MQL5: desde E/S básicas hasta la creación de un lector CSV personalizado
Este artículo se centra en las técnicas esenciales de manejo de archivos MQL5, que abarcan registros de operaciones, procesamiento CSV e integración de datos externos. Ofrece tanto comprensión conceptual como orientación práctica sobre codificación. Los lectores aprenderán a crear paso a paso una clase de importador CSV personalizada, adquiriendo habilidades prácticas para aplicaciones del mundo real.
Desarrollo de un sistema de repetición (Parte 46): Proyecto Chart Trade (V)
¿Cansado de perder tiempo buscando ese archivo que es necesario para que tu aplicación funcione? ¿Qué tal si incluimos todo en el ejecutable? Así nunca perderás tiempo buscando las cosas. Sé que muchos utilizan exactamente esa forma de distribuir y guardar las cosas. Pero existe una manera mucho más adecuada. Al menos en lo que respecta a la distribución de ejecutables y almacenamiento de los mismos. La forma que explicaré aquí, puede ser de gran ayuda. Ya que puedes usar el propio MetaTrader 5 como un gran ayudante, así como el MQL5. No es algo tan complejo ni difícil de entender.
Reimaginando las estrategias clásicas en MQL5 (Parte III): Previsión del FTSE 100
En esta serie de artículos, revisaremos estrategias de negociación muy conocidas para averiguar si podemos mejorarlas utilizando la IA. En el artículo de hoy, exploraremos el FTSE 100 e intentaremos predecir el índice utilizando una parte de los valores individuales que lo componen.
Simulación de mercado (Parte 16): Sockets (X)
Estamos a punto de concluir este desafío. Sin embargo, antes de pasar al siguiente, quiero que tú, querido lector, procures comprender estos dos artículos, tanto este como el anterior. Así podrás entender realmente el próximo artículo, en el que abordaré exclusivamente la parte referente a la programación en MQL5. Aunque en él también procuraré que sea fácil de entender. Si no comprendes estos dos últimos artículos, con toda seguridad tendrás grandes dificultades para entender el siguiente. El motivo es simple: los contenidos se van acumulando. Cuantas más cosas haya que hacer, más cosas será necesario crear y comprender para alcanzar el objetivo.
Selección de características paso a paso en MQL5
En este artículo, presentamos una versión modificada de la selección de características paso a paso, implementada en MQL5. Este enfoque se basa en las técnicas descritas en Algoritmos modernos de minería de datos en C++ y CUDA C de Timothy Masters.
Métodos de conjunto para mejorar las tareas de clasificación en MQL5
En este artículo, presentamos la implementación de varios clasificadores de conjunto en MQL5 y analizamos su eficacia en diferentes situaciones.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)
Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)
En este artículo, analizaremos las modificaciones necesarias para que el sistema de repetición/simulación pueda operar de manera más eficiente y segura. También mostraré algo de interés para quienes deseen aprovechar al máximo el uso de clases. Además, abordaré un problema específico de MQL5 que reduce el rendimiento del código al trabajar con clases y explicaré cómo resolverlo.
Del básico al intermedio: Plantilla y Typename (II)
En este artículo, mostraremos cómo lidiar con una de las situaciones más molestas y complicadas en términos de programación con las que tú podrías encontrarte: el uso de tipos diferentes en una misma plantilla de función o procedimiento. Aunque nos hemos enfocado casi todo el tiempo solo en funciones, todo lo que se ha visto aquí sirve y puede aplicarse a procedimientos.
Características del Wizard MQL5 que debe conocer (Parte 52): Accelerator Oscillator (AC)
El Accelerator Oscillator es otro indicador de Bill Williams que sigue la aceleración del impulso del precio y no solo su ritmo. Aunque es muy similar al oscilador Awesome que analizamos en un artículo reciente, busca evitar los efectos de retraso centrándose más en la aceleración que en la velocidad. Como siempre, examinamos qué patrones podemos obtener de esto y también qué importancia podría tener cada uno de ellos en el trading a través de un asesor experto creado por el Asistente MQL5 (MQL5 Wizard).
Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)
Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)
En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.
Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.
Algoritmo de Tribu Artificial (Artificial Tribe Algorithm, ATA)
Este artículo detalla los componentes clave y las innovaciones del algoritmo de optimización ATA, un método evolutivo con un sistema de comportamiento dual único que se adapta según la situación. Usando el cruce para la exploración en profundidad y la migración para la búsqueda cuando se dan atascos en óptimos locales, el ATA combina el aprendizaje individual y el social.
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.
Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer
Al estudiar las distintas arquitecturas de construcción de modelos, prestamos poca atención al proceso de entrenamiento de los mismos. En este artículo intentaremos rellenar ese vacío.
Creación de un Panel de administración de operaciones en MQL5 (Parte VI): Interfaz de múltiples funciones (I)
La función del administrador de operaciones va más allá de las comunicaciones por Telegram; también puede participar en diversas actividades de control, como la gestión de órdenes, el seguimiento de posiciones y la personalización de interfaces. En este artículo, compartiremos información práctica sobre cómo ampliar nuestro programa para admitir múltiples funcionalidades en MQL5. Esta actualización tiene como objetivo superar la limitación actual del Panel de administración, que se centra principalmente en la comunicación, permitiéndole gestionar una gama más amplia de tareas.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA
Estamos pasando de simplemente ver las métricas analizadas en gráficos a una perspectiva más amplia que incluye la integración de Telegram. Esta mejora permite que los resultados importantes se envíen directamente a tu dispositivo móvil a través de la aplicación Telegram. Acompáñenos en este viaje que exploraremos juntos en este artículo.
Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)
En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.
Creación de un Panel de administración de operaciones en MQL5 (Parte VIII): Panel de análisis
Hoy profundizamos en la incorporación de métricas de trading útiles dentro de una ventana especializada integrada en el EA del Panel de Administración.
Este debate se centra en la implementación de MQL5 para desarrollar un panel de análisis y destaca el valor de los datos que proporciona a los administradores de operaciones bursátiles. El impacto es principalmente educativo, ya que se extraen valiosas lecciones del proceso de desarrollo, lo que beneficia tanto a los desarrolladores noveles como a los experimentados. Esta función demuestra las oportunidades ilimitadas que ofrece esta serie de desarrollo al equipar a los gestores comerciales con herramientas de software avanzadas. Además, exploraremos la implementación de las clases PieChart y ChartCanvas como parte de la continua expansión de las capacidades del panel del administrador de operaciones.
Simulación de mercado (Parte 10): Sockets (IV)
En este artículo, te muestro lo que necesitas hacer para empezar a utilizar Excel y controlar MetaTrader 5, pero de una forma muy interesante. Para ello, utilizaremos un complemento de Excel, de modo que no sea necesario utilizar el VBA integrado. Si no sabes de qué complemento se trata, consulta este artículo y aprende a programar en Python directamente en Excel.
Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton
Las máquinas de vectores de soporte clasifican los datos en función de clases predefinidas explorando los efectos de aumentar su dimensionalidad. Se trata de un método de aprendizaje supervisado bastante complejo dado su potencial para tratar datos multidimensionales. Para este artículo consideramos cómo su implementación muy básica de datos bidimensionales puede hacerse más eficientemente con el polinomio de Newton al clasificar precio-acción.
Introducción a Connexus (Parte 1): ¿Cómo utilizar la función WebRequest?
Este artículo es el comienzo de una serie de desarrollos para una biblioteca llamada “Connexus” para facilitar las solicitudes HTTP con MQL5. El objetivo de este proyecto es brindarle al usuario final esta oportunidad y mostrarle cómo utilizar esta biblioteca auxiliar. Mi intención era hacerlo lo más sencillo posible para facilitar el estudio y ofrecer la posibilidad de desarrollos futuros.
Neurona biológica para la previsión de series temporales financieras
Construimos un sistema de neuronas biológicamente correcto para la predicción de series temporales. La introducción de un medio similar al plasma en la arquitectura de una red neuronal ha creado una especie de "mente colectiva", en la que cada neurona influye en el trabajo del sistema no solo a través de conexiones directas, sino también mediante interacciones electromagnéticas de largo alcance. ¿Cómo se comportará el sistema de modelización neural del cerebro en el mercado?
Elementos del análisis de correlación en MQL5: Prueba chi-cuadrado de Pearson de independencia y ratio de correlación.
El artículo analiza las herramientas clásicas del análisis de correlaciones. Se hace hincapié en los breves antecedentes teóricos, así como en la aplicación práctica de la prueba de independencia chi-cuadrado de Pearson y la ratio de correlación.
Optimización de la quimiotaxis bacteriana - Bacterial Chemotaxis Optimisation (BCO)
Este artículo presenta la versión original del algoritmo de optimización de la quimiotaxis bacteriana (BCO) y su versión modificada. Hoy veremos con detalle todas las diferencias, centrándonos en la nueva versión de BCOm, que simplifica el mecanismo de movimiento bacteriano, reduce la dependencia de la historia de cambios de posición y utiliza operaciones matemáticas más sencillas en comparación con la versión original, sobrecargada computacionalmente. También realizaremos pruebas y extraeremos conclusiones.
Redes generativas antagónicas (GAN) para datos sintéticos en modelos financieros (Parte 1): Introducción a las GAN y los datos sintéticos en modelos financieros
Este artículo presenta a los operadores bursátiles las redes generativas antagónicas (Generative Adversarial Networks, GAN) para generar datos financieros sintéticos, abordando las limitaciones de datos en el entrenamiento de modelos. Este artículo presenta a los operadores bursátiles las redes generativas antagónicas (GAN) para generar datos financieros sintéticos, abordando las limitaciones de datos en el entrenamiento de modelos.
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)
El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (GSM++)
Los modelos híbridos de secuencias de grafos (GSM++) combinan los puntos fuertes de distintas arquitecturas para posibilitar un análisis de datos de gran precisión y optimizar los costes computacionales. Estos modelos se adaptan eficazmente a los datos dinámicos del mercado, mejorando la presentación y el procesamiento de la información financiera.
Desarrollo de un sistema de repetición (Parte 55): Módulo de control
En este artículo, implementaremos el indicador de control de manera que pueda integrarse en el sistema de mensajes que está en desarrollo. Aunque no es algo muy complejo de hacer, es necesario entender algunos detalles sobre cómo inicializar este módulo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (IV) - Probar la estrategia de trading
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que debemos pensar en cómo integrar potentes LLM en nuestro trading algorítmico. Para la mayoría de las personas, resulta difícil ajustar estos potentes modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
Desarrollo de un sistema de repetición (Parte 70): Ajuste del tiempo (III)
En este artículo, mostraré cómo utilizar la función CustomBookAdd de manera correcta y funcional. Aunque pueda parecer sencillo, tiene muchas implicaciones. Por ejemplo, permite indicar al indicador de mouse si el símbolo personalizado está en subasta, en negociación o si el mercado está cerrado. El contenido expuesto aquí tiene como único objetivo ser didáctico. En ningún caso debe considerarse una aplicación cuya finalidad sea distinta a la de aprender y estudiar los conceptos mostrados.
Integración de las API de los brókers con los Asesores Expertos usando MQL5 y Python
En este artículo, analizaremos la implementación de MQL5 en colaboración con Python para realizar operaciones relacionadas con los brókers. Imagina tener un asesor experto (Expert Advisor, EA) funcionando continuamente alojado en un VPS, ejecutando operaciones en tu nombre. En algún momento, la capacidad de la EA para gestionar fondos se vuelve primordial. Esto incluye operaciones como recargar su cuenta de trading e iniciar retiradas. En este debate, analizaremos las ventajas y la aplicación práctica de estas funciones, garantizando una integración perfecta de la gestión de fondos en su estrategia comercial. ¡Estén atentos!
Desarrollo de un sistema de repetición (Parte 58): Volvemos a trabajar en el servicio
Después de haber tomado un descanso en el desarrollo y perfeccionamiento del servicio usado en la repetición/simulación, retomaremos el trabajo en él. Ahora que no utilizaremos algunos recursos, como las variables globales del terminal, es necesario reestructurar por completo algunas partes de él. No se preocupen, este proceso se explicará adecuadamente para que todos puedan seguir el desarrollo del servicio.
Del básico al intermedio: Paso por valor o por referencia
En este artículo entenderás en la práctica la diferencia entre el paso por valor y el paso por referencia. Aunque parece algo aparentemente sencillo y que no suele causar problemas, muchos programadores con una considerable experiencia suelen enfrentarse a verdaderos contratiempos con sus códigos, precisamente por este pequeño detalle. Saber cuándo, cómo y por qué usar un paso por valor o un paso por referencia marcará una gran diferencia en tu vida como programador. El contenido presentado aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación destinada a otro fin que no sea el aprendizaje y el estudio de los conceptos mostrados.
Del básico al intermedio: Plantilla y Typename (V)
En este artículo, veremos un último caso simple de uso de plantillas, pero también veremos cuál es la utilidad y por qué la necesidad de utilizar typename en tus códigos. Aunque este artículo pueda parecer un tanto complicado al principio, es necesario comprenderlo adecuadamente para que futuras aplicaciones que utilicen plantilla y typename, sean, de hecho, comprendidas.
Características del Wizard MQL5 que debe conocer (Parte 32): Regularización
La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.