Dominando los registros (Parte 1): Conceptos fundamentales y primeros pasos en MQL5
¡Bienvenidos al comienzo de otro viaje! Este artículo abre una serie especial donde crearemos, paso a paso, una biblioteca para la manipulación de registros, diseñada para quienes desarrollan en el lenguaje MQL5.
Búsqueda dialéctica - Dialectic Search (DA)
Hoy nos familiarizaremos con el Algoritmo Dialéctico (DA), un nuevo método de optimización global inspirado en el concepto filosófico de la dialéctica. El algoritmo explota la singular división de la población en pensadores especulativos y prácticos. Las pruebas demuestran un impresionante rendimiento de hasta el 98% en tareas pequeñas y una eficiencia global del 57,95%. El artículo explica estas métricas y presenta una descripción detallada del algoritmo y resultados experimentales con distintos tipos de características.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)
Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
Puntuación de propensión (Propensity score) en la inferencia causal
Este artículo trata el tema del emparejamiento en la inferencia causal. El emparejamiento se usa para emparejar observaciones similares en un conjunto de datos. Esto es necesario para identificar correctamente los efectos causales, eliminando el sesgo. Hoy explicaremos cómo esto ayuda a crear sistemas comerciales basados en el aprendizaje automático que se vuelven más robustos con nuevos datos en los que no se ha entrenado. El papel principal lo asignaremos a la puntuación de propensión, ampliamente utilizada en la inferencia causal.
Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.
Algoritmo de trading evolutivo con aprendizaje por refuerzo y extinción de individuos no rentables (ETARE)
Hoy le presentamos un innovador algoritmo comercial que combina algoritmos evolutivos con aprendizaje profundo por refuerzo para la negociación de divisas. El algoritmo utiliza un mecanismo de extinción de individuos ineficaces para optimizar la estrategia comercial.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 10): Flujo externo (II) VWAP
¡Domina el poder del VWAP con nuestra guía completa! Aprenda a integrar el análisis VWAP en su estrategia de trading utilizando MQL5 y Python. Maximice su conocimiento del mercado y mejore sus decisiones comerciales hoy mismo.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados
Aquí veremos cómo accionar eventos personalizados y mejorar la cuestión de cómo el indicador informa del estado del servicio de repetición/simulación.
Características del Wizard MQL5 que debe conocer (Parte 21): Pruebas con datos del calendario económico
De manera predeterminada, los datos del calendario económico no están disponibles para realizar pruebas con asesores expertos dentro del Probador de estrategias. Analizamos cómo las bases de datos podrían ayudar a solucionar esta limitación. Entonces, en este artículo exploramos cómo se pueden usar las bases de datos SQLite para archivar noticias del Calendario Económico, de modo que los Asesores Expertos ensamblados mediante un asistente puedan usarlas para generar señales comerciales.
HTTP y Connexus (Parte 2): Comprensión de la arquitectura HTTP y el diseño de bibliotecas
Este artículo explora los fundamentos del protocolo HTTP, cubriendo los métodos principales (GET, POST, PUT, DELETE), los códigos de estado y la estructura de las URL. Además, presenta el inicio de la construcción de la librería Conexus con las clases CQueryParam y CURL, que facilitan la manipulación de URLs y parámetros de consulta en peticiones HTTP.
Red neural en la práctica: Pseudo inversa (I)
Aquí, comenzaremos a ver cómo podemos implementar, utilizando MQL5 puro, el cálculo de la pseudo inversa. A pesar de que el código que veremos será considerablemente más complicado para los principiantes de lo que realmente me gustaría presentar, aún estoy pensando en cómo explicarlo de manera sencilla. Considera esto una oportunidad para estudiar un código poco común. Así que ve con calma. Sin prisa. Aunque no esté enfocado en ser eficiente o de rápida ejecución, el objetivo es ser lo más didáctico posible.
Redes neuronales: así de sencillo (Parte 72): Predicción de trayectorias en entornos ruidosos
La calidad de las predicciones de los estados futuros desempeña un papel importante en el método Goal-Conditioned Predictive Coding, del que hablamos en el artículo anterior. En este artículo quiero presentarte un algoritmo que puede mejorar significativamente la calidad de la predicción en entornos estocásticos, como los mercados financieros.
Automatización de estrategias de trading en MQL5 (Parte 4): Creación de un sistema de recuperación de zonas multinivel
En este artículo, desarrollamos un sistema de recuperación de zonas multinivel en MQL5 que utiliza el RSI para generar señales de trading. Cada instancia de señal se añade dinámicamente a una estructura de matriz, lo que permite al sistema gestionar múltiples señales simultáneamente dentro de la lógica de recuperación de zona. Mediante este enfoque, demostramos cómo manejar de manera efectiva escenarios complejos de gestión comercial, manteniendo al mismo tiempo un diseño de código escalable y robusto.
Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)
En esta serie de artículos, exploramos estrategias de negociación populares e intentamos mejorarlas utilizando IA. En el artículo de hoy, retomamos la estrategia de negociación clásica basada en la relación entre el mercado de valores y el mercado de bonos.
Operar con el Calendario Económico MQL5 (Parte 1): Dominar las funciones del Calendario Económico MQL5
En este artículo, exploramos cómo utilizar el Calendario Económico MQL5 para operar, comenzando por comprender sus funciones principales. A continuación, implementamos las funciones clave del Calendario Económico en MQL5 para extraer datos relevantes de noticias que nos ayuden a tomar decisiones de trading. Finalmente, concluimos mostrando cómo utilizar esta información para mejorar las estrategias comerciales de manera efectiva.
Redes neuronales en el trading: Modelo adaptativo multiagente (Final)
En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.
DoEasy. Funciones de servicio (Parte 3): Patrón "Barra exterior"
En este artículo desarrollaremos el patrón Price Action "Barra exterior" en la biblioteca DoEasy y optimizaremos los métodos de acceso a la gestión de los patrones de precios. Además, trabajaremos en la corrección de los fallos y errores detectados durante las pruebas de la biblioteca.
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov
En esta discusión, aplicaremos una cadena de Markov simple en un indicador RSI, para observar cómo se comporta el precio después de que el indicador pasa por niveles clave. Concluimos que las señales de compra y venta más fuertes en el par NZDJPY se generan cuando el RSI está en el rango 11-20 y 71-80, respectivamente. Demostraremos cómo puedes manipular tus datos para crear estrategias comerciales óptimas que se aprenden directamente de los datos que tienes. Además, demostraremos cómo entrenar una red neuronal profunda para aprender a utilizar la matriz de transición de manera óptima.
Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX
Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!
Sistemas neurosimbólicos en trading algorítmico: Combinación de reglas simbólicas y redes neuronales
El artículo relata la experiencia del desarrollo de un sistema comercial híbrido que combine el análisis técnico clásico con las redes neuronales. El autor describe detalladamente la arquitectura del sistema, desde el análisis básico de patrones y la estructura de la red neuronal hasta los mecanismos de toma de decisiones comerciales, compartiendo código real y observaciones de carácter práctico.
Cambiando a MQL5 Algo Forge (Parte 4): Trabajamos con versiones y lanzamientos
Continuaremos el desarrollo del proyecto Simple Candles y Adwizard describiendo los matices del uso del sistema de control de versiones y el repositorio MQL5 Algo Forge.
Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5
En este artículo exploramos diferentes formas en que los vectores propios y los valores propios pueden aplicarse en el análisis exploratorio de datos para revelar relaciones únicas en los datos.
Del básico al intermedio: Eventos (II)
En este artículo veremos que no siempre es necesario implementar las cosas de una u otra manera. Existen formas alternativas de hacer las cosas. Comprender los conceptos explicados en artículos anteriores es primordial para entender adecuadamente el contenido de este artículo. El contenido expuesto aquí tiene como objetivo único y exclusivo la didáctica. En ningún caso debe considerarse una aplicación final, en la que el objetivo no sea el estudio de los conceptos aquí mostrados.
Aprendizaje automático y Data Science (Parte 31): Uso de los modelos de inteligencia artificial CatBoost
Los modelos de IA CatBoost han ganado popularidad masiva recientemente entre las comunidades de aprendizaje automático debido a su precisión predictiva, eficiencia y robustez ante conjuntos de datos dispersos y difíciles. En este artículo, vamos a discutir en detalle cómo implementar este tipo de modelos en un intento de vencer al mercado de divisas.
Análisis de todas las variantes del movimiento de precios en una computadora cuántica IBM
Hoy utilizaremos un computadora cuántica de IBM para descubrir todas las variantes del movimiento de los precios. ¿Le suena a ciencia ficción? ¡Bienvenido al mundo de la informática cuántica para el trading!
DoEasy. Elementos de control (Parte 5): Objeto básico WinForms, control "Panel", parámetro AutoSize
En este artículo, crearemos un objeto básico para todos los objetos de la biblioteca WinForms y comenzaremos a implementar la propiedad AutoSize del objeto WinForms "Panel", es decir, el cambio automático del tamaño para que se ajuste a su contenido interno.
Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)
Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)
En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
Del básico al intermedio: Variables (II)
En este artículo vamos a ver cómo trabajar con variables del tipo estática. Este tema suele confundir a muchos programadores, tanto principiantes como aquellos con algo de experiencia. Esto se debe a que existen algunos cuidados y trucos que deben observarse al usar este mecanismo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la enseñanza didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos presentados.
Redes neuronales en el trading: Superpoint Transformer (SPFormer)
En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión
Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.
Indicador personalizado: Trazado de puntos de entradas parciales en cuentas netting
En este artículo, exploraremos una forma interesante y diferente de crear un indicador en MQL5. En lugar de centrarnos en una tendencia o patrón gráfico, el objetivo será gestionar nuestras propias posiciones, incluyendo las entradas y salidas parciales. Utilizaremos intensivamente matrices dinámicas y algunas funciones comerciales (Trade) relacionadas con el historial de transacciones y las posiciones abiertas para indicar en el gráfico dónde se llevaron a cabo estas operaciones.
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)
Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
Del básico al intermedio: Definiciones (I)
En este artículo, haremos cosas que para muchos parecerán extrañas y totalmente fuera de contexto, pero que, si se aplican bien, harán que tu aprendizaje sea mucho más divertido y emocionante, ya que podemos construir cosas bastante interesantes basándonos en lo que se muestra aquí, lo que permite una mejor asimilación de la sintaxis del lenguaje MQL5. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.
Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)
Este artículo presenta el Algoritmo de Irrigación Artificial (ASHA), un nuevo método metaheurístico desarrollado para resolver problemas generales de optimización. Basado en la modelización de los procesos de flujo y almacenamiento del agua, este algoritmo construye el concepto de un campo ideal en el que cada unidad de recurso (agua) es invocada para encontrar una solución óptima. Hoy descubriremos cómo el ASHA adapta los principios de flujo y acumulación para asignar eficazmente los recursos en el espacio de búsqueda, y también veremos su aplicación y los resultados de sus pruebas.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)
Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.