
Algoritmo de optimización aritmética (AOA): De AOA a SOA (Simple Optimization Algorithm)
En este artículo, presentamos el algoritmo de optimización aritmética (AOA) basado en operaciones aritméticas simples: suma, resta, multiplicación y división. Estas operaciones matemáticas básicas sirven como base para encontrar soluciones óptimas a diversos problemas.

Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real
Al acercarnos gradualmente un asesor experto listo, debemos prestar atención a las cuestiones que son secundarias en la etapa de prueba de la estrategia comercial, pero que se vuelven importantes al pasar a la negociación real.

Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos
Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.

Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.

Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)
En esta serie de artículos, exploramos estrategias de negociación populares e intentamos mejorarlas utilizando IA. En el artículo de hoy, retomamos la estrategia de negociación clásica basada en la relación entre el mercado de valores y el mercado de bonos.

Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.

Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.

Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)
Gran parte de las personas que quieren, o desean aprender a programar, no tienen en realidad idea de lo que están haciendo. Lo que hacen es intentar crear las cosas de una determinada manera. Sin embargo, cuando programamos no estamos realmente intentando crear una solución. Si intentas hacerlo de esta manera, generarás más problemas que soluciones. Aquí haremos algo un poco más avanzado, y por consecuencia diferente.

Del básico al intermedio: Variables (I)
Muchos programadores principiantes tienen muchas dificultades para comprender por qué sus códigos no funcionan como esperan. Existen muchos detalles que hacen que un código sea realmente funcional. No se trata simplemente de escribir toda una serie de funciones y operaciones para que un código funcione. ¿Qué tal si aprendemos de la manera correcta cómo se crea un código real en lugar de copiar y pegar fragmentos de código encontrados aquí y allá? El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Redes neuronales en el trading: Segmentación guiada (Final)
Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.

El método de agrupamiento para el manejo de datos: Implementación del algoritmo iterativo multicapa en MQL5
En este artículo describimos la implementación del algoritmo iterativo multicapa del método de agrupamiento para el manejo de datos en MQL5.

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov
En esta discusión, aplicaremos una cadena de Markov simple en un indicador RSI, para observar cómo se comporta el precio después de que el indicador pasa por niveles clave. Concluimos que las señales de compra y venta más fuertes en el par NZDJPY se generan cuando el RSI está en el rango 11-20 y 71-80, respectivamente. Demostraremos cómo puedes manipular tus datos para crear estrategias comerciales óptimas que se aprenden directamente de los datos que tienes. Además, demostraremos cómo entrenar una red neuronal profunda para aprender a utilizar la matriz de transición de manera óptima.

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)
El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.

Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas
La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.

Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX
Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados
Aquí veremos cómo accionar eventos personalizados y mejorar la cuestión de cómo el indicador informa del estado del servicio de repetición/simulación.

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 1): Proyector de gráficos
Este proyecto tiene como objetivo aprovechar el lenguaje MQL5 para desarrollar un conjunto integral de herramientas de análisis para MetaTrader 5. Estas herramientas, que van desde scripts e indicadores hasta modelos de IA y asesores expertos, automatizarán el proceso de análisis del mercado. En ocasiones, este desarrollo producirá herramientas capaces de realizar análisis avanzados sin intervención humana y pronosticar resultados para las plataformas adecuadas. Ninguna oportunidad jamás se perderá. Únase a mí mientras exploramos el proceso de creación de un conjunto sólido de herramientas personalizadas para el análisis de mercado. Comenzaremos desarrollando un programa MQL5 simple que he llamado "Proyector de gráficos" (Chart Projector).

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)
Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.

Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.

Redes neuronales en el trading: Modelo adaptativo multiagente (Final)
En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.

Características del Wizard MQL5 que debe conocer (Parte 19): Inferencia bayesiana
La inferencia bayesiana es la adopción del teorema de Bayes para actualizar la hipótesis de probabilidad a medida que se dispone de nueva información. Esto intuitivamente se inclina hacia la adaptación en el análisis de series de tiempo, por lo que observamos cómo podríamos usarlo para crear clases personalizadas no solo para la señal sino también para la gestión de dinero y los trailing stops.

Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.

Indicador personalizado: Trazado de puntos de entradas parciales en cuentas netting
En este artículo, exploraremos una forma interesante y diferente de crear un indicador en MQL5. En lugar de centrarnos en una tendencia o patrón gráfico, el objetivo será gestionar nuestras propias posiciones, incluyendo las entradas y salidas parciales. Utilizaremos intensivamente matrices dinámicas y algunas funciones comerciales (Trade) relacionadas con el historial de transacciones y las posiciones abiertas para indicar en el gráfico dónde se llevaron a cabo estas operaciones.

Redes neuronales en el trading: Superpoint Transformer (SPFormer)
En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.

El método de manejo de datos en grupo: implementación del algoritmo combinatorio en MQL5
En este artículo continuamos nuestra exploración de la familia de algoritmos del método de manejo de datos en grupo, con la implementación del algoritmo combinatorio junto con su encarnación refinada, el algoritmo combinatorio selectivo en MQL5.

Del básico al intermedio: Variables (II)
En este artículo vamos a ver cómo trabajar con variables del tipo estática. Este tema suele confundir a muchos programadores, tanto principiantes como aquellos con algo de experiencia. Esto se debe a que existen algunos cuidados y trucos que deben observarse al usar este mecanismo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la enseñanza didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos presentados.

Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)
Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.

DoEasy. Funciones de servicio (Parte 3): Patrón "Barra exterior"
En este artículo desarrollaremos el patrón Price Action "Barra exterior" en la biblioteca DoEasy y optimizaremos los métodos de acceso a la gestión de los patrones de precios. Además, trabajaremos en la corrección de los fallos y errores detectados durante las pruebas de la biblioteca.

Del básico al intermedio: Unión (I)
En este artículo, veremos qué es una unión. Aquí, mediante la experimentación, analizaremos las primeras construcciones en las que podría utilizarse una unión. No obstante, lo que se mostrará aquí es solo la parte básica de todo un conjunto de conceptos e información que se explorará más a fondo en artículos futuros. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.

Reimaginando las estrategias clásicas en MQL5 (Parte X): ¿Puede la IA impulsar el MACD?
Únase a nosotros mientras analizamos empíricamente el indicador MACD para comprobar si la aplicación de la IA a una estrategia, incluyendo el indicador, produciría alguna mejora en nuestra precisión a la hora de pronosticar el EURUSD. Evaluamos simultáneamente si el indicador en sí mismo es más fácil de predecir que el precio, así como si el valor del indicador es predictivo de los niveles de precios futuros. Le proporcionaremos la información que necesita para decidir si debe considerar invertir su tiempo en integrar el MACD en sus estrategias de trading con IA.

Algoritmo de optimización basado en ecosistemas artificiales — Artificial Ecosystem-based Optimization (AEO)
El artículo analiza el algoritmo metaheurístico AEO que modela las interacciones entre los componentes del ecosistema mediante la creación de una población inicial de soluciones y la aplicación de estrategias de actualización adaptativas, y detalla las etapas de funcionamiento del AEO, incluidas las fases de consumo y descomposición, así como diversas estrategias de comportamiento de los agentes. El artículo presenta las peculiaridades y ventajas de este algoritmo.

Perspectivas bursátiles a través del volumen: más allá de los gráficos OHLC
Sistema de negociación algorítmica que combina el análisis de volumen con técnicas de aprendizaje automático, concretamente redes neuronales LSTM. A diferencia de los enfoques tradicionales de negociación, que se centran principalmente en los movimientos de los precios, este sistema hace hincapié en los patrones de volumen y sus derivados para predecir los movimientos del mercado. La metodología incorpora tres componentes principales: análisis de derivadas de volumen (derivadas primera y segunda), predicciones LSTM para patrones de volumen e indicadores técnicos tradicionales.

Redes neuronales en el trading: Agente con memoria multinivel (Final)
Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.

Desarrollando un cliente MQTT para MetaTrader 5: metodología TDD (Parte 6)
Este artículo supone la sexta parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT 5.0. En esta parte, describiremos los principales cambios en nuestra primera refactorización, obteniendo un borrador de trabajo de nuestras clases de construcción de paquetes, creando los paquetes PUBLISH y PUBACK y la semántica de los códigos de motivo PUBACK.

Reimaginando las estrategias clásicas (Parte VIII): Los mercados de divisas y metales preciosos en el USDCAD
En esta serie de artículos, revisamos estrategias de negociación bien conocidas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy comprobaremos si existe una relación fiable entre los metales preciosos y las divisas.

Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt
Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 08): Bloqueo del indicador
En este artículo te mostraré cómo bloquear un indicador, simplemente utilizando el lenguaje MQL5, de una forma muy interesante y sorprendente.

Visualización de transacciones en un gráfico (Parte 2): Visualización gráfica de datos
Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de operaciones para analizar las entradas de operaciones. Toda la información necesaria sobre una operación debe mostrarse cómodamente en un gráfico con la posibilidad de dibujar distintos plazos.

Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios
En este artículo nos familiarizaremos con el método Mask-Attention-Free Transformer (MAFT) y su aplicación en el ámbito del trading. A diferencia de los Transformers tradicionales, que requieren el enmascaramiento de los datos durante el procesamiento de la secuencia, el MAFT optimiza el proceso de atención eliminando la necesidad de enmascaramiento, lo que mejora significativamente la eficiencia computacional.

Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)
Este artículo presenta el Algoritmo de Irrigación Artificial (ASHA), un nuevo método metaheurístico desarrollado para resolver problemas generales de optimización. Basado en la modelización de los procesos de flujo y almacenamiento del agua, este algoritmo construye el concepto de un campo ideal en el que cada unidad de recurso (agua) es invocada para encontrar una solución óptima. Hoy descubriremos cómo el ASHA adapta los principios de flujo y acumulación para asignar eficazmente los recursos en el espacio de búsqueda, y también veremos su aplicación y los resultados de sus pruebas.