Automatización de estrategias de trading en MQL5 (Parte 9): Creación de un asesor experto para la estrategia de ruptura asiática
En este artículo, creamos un Asesor Experto en MQL5 para la estrategia de ruptura asiática calculando los máximos y mínimos de la sesión y aplicando un filtro de tendencia con una media móvil. Implementamos estilos dinámicos para objetos, entradas de tiempo definidas por el usuario y una sólida gestión de riesgos. Por último, mostramos técnicas de pruebas retrospectivas y optimización para perfeccionar el sistema.
Del básico al intermedio: Estructuras (V)
En este artículo, veremos cómo se realiza la sobrecarga de un código estructural. Sé que esto es bastante difícil de entender al principio, sobre todo si es la primera vez que ves esto. Es muy importante que asimiles estos conceptos y entiendas muy bien lo que sucede aquí antes de intentar aventurarte en cosas más complicadas y elaboradas.
Mecanismos de compuertas en el aprendizaje en conjuntos
En este artículo, continuamos nuestra exploración de los modelos ensamblados analizando el concepto de compuertas, concretamente cómo pueden ser útiles para combinar los resultados de los modelos con el fin de mejorar la precisión de las predicciones o la generalización de los modelos.
Dominando los registros (Parte 2): Formateo de registros
En este artículo, exploraremos cómo crear y aplicar formateadores de registros en la biblioteca. Veremos todo, desde la estructura básica de un formateador hasta ejemplos de implementación práctica. Al finalizar, tendrás el conocimiento necesario para formatear registros dentro de la biblioteca y comprenderás cómo funciona todo detrás de escena.
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Dominando los registros (Parte 5): Optimizar el controlador con caché y rotación
Este artículo mejora la biblioteca de registro agregando formateadores en los controladores, la clase CIntervalWatcher para administrar ciclos de ejecución, optimización con almacenamiento en caché y rotación de archivos, pruebas de rendimiento y ejemplos prácticos. Con estas mejoras, aseguramos un sistema de registro eficiente, escalable y adaptable a diferentes escenarios de desarrollo.
Simulación de mercado (Parte 09): Sockets (III)
Este artículo es la continuación del anterior. En él veremos cómo se implementará el Asesor Experto, centrándonos principalmente en cómo debe hacerse el código del servidor. El código del artículo anterior no es suficiente para que las cosas funcionen como deberían, por lo que es necesario profundizar en él. Por esta razón, es necesario que leas ambos artículos para comprender mejor lo que ocurrirá.
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte VI): Cómo aprovechar el doble descenso profundo
El aprendizaje automático tradicional enseña a los profesionales a estar atentos para no sobreajustar sus modelos. Sin embargo, esta ideología está siendo cuestionada por nuevos hallazgos publicados por diligentes investigadores de Harvard, quienes han descubierto que lo que parece ser un sobreajuste puede, en algunas circunstancias, ser el resultado de finalizar prematuramente los procedimientos de entrenamiento. Demostraremos cómo podemos utilizar las ideas publicadas en el artículo de investigación para mejorar nuestro uso de la IA en la previsión de retornos del mercado.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)
Hoy discutiremos cómo mejorar la seguridad del Panel de administrador comercial que actualmente se encuentra en desarrollo. Exploraremos cómo implementar MQL5 en una nueva estrategia de seguridad, integrando la API de Telegram para la autenticación de dos factores (2FA). Esta discusión proporcionará información valiosa sobre la aplicación de MQL5 para reforzar las medidas de seguridad. Además, examinaremos la función MathRand, centrándonos en su funcionalidad y cómo se puede utilizar de forma efectiva dentro de nuestro marco de seguridad. ¡Sigue leyendo para descubrir más!
Del básico al intermedio: Estructuras (IV)
En este artículo, veremos cómo producir el llamado código estructural, en el que se coloca todo el contexto y las formas de manipular variables e información dentro de una estructura, con el fin de generar un contexto adecuado para la implementación de cualquier código. Veremos la necesidad de utilizar la cláusula private para separar lo que es público de lo que no, espetando así la regla de encapsulamiento y manteniendo el contexto para el que se creó una estructura de datos.
Dominando los registros (Parte 4): Guardar registros en archivos
En este artículo, te enseñaré operaciones básicas con archivos y cómo configurar un controlador flexible para personalizarlo. Actualizaremos la clase CLogifyHandlerFile para escribir los registros directamente en un archivo. Realizaremos una prueba de rendimiento simulando una estrategia en el EURUSD durante una semana, generando registros en cada tick, con una duración total de 5 minutos y 11 segundos. El resultado se comparará en un artículo futuro, en el que implementaremos un sistema de almacenamiento en caché para mejorar el rendimiento.
Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)
En este artículo, mostraré cómo corregir dos errores presentes en el código. Sin embargo, he intentado explicarlas de manera que tú, aspirante a programador, entiendas que las cosas no siempre ocurrirán como habías previsto. Pero esto no debe ser motivo de desesperación, sino una oportunidad para aprender. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe interpretarse como una aplicación cuya finalidad sea distinta al aprendizaje y estudio de los conceptos presentados.
Simulación de mercado (Parte 13): Sockets (VII)
Cuando tú desarrollas algo, ya sea en xlwings o en cualquier otro paquete que nos permita leer y escribir directamente en Excel, en realidad deberías notar que todos los programas, funciones o procedimientos se ejecutan y luego finalizan su tarea. No permanecen allí dentro de un bucle, y, por más que intentes hacer las cosas de otra forma.
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)
Hoy proponemos al lector un primer contacto con el nuevo framework PSformer, que adapta la arquitectura del Transformer vainilla para resolver problemas de previsión de series temporales multidimensionales. El framework se basa en dos innovaciones clave: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt).
Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.
Gestor de riesgos profesional remoto para Forex en Python
Hoy crearemos un gestor de riesgos profesional remoto para Forex en Python, y los desplegaremos en un servidor paso a paso. En el transcurso del artículo entenderemos cómo gestionar programáticamente los riesgos en Forex, y cómo no agotar más nuestro depósito en el mundo de las divisas.
Simulación de mercado (Parte 07): Sockets (I)
Sockets. ¿Sabes para qué sirven o cómo usarlos en MetaTrader 5? Si la respuesta es no, comencemos aprendiendo un poco sobre ellos. Este artículo trata de lo más básico. Pero, como existen diversas maneras de hacer lo mismo, y lo que realmente nos interesa es siempre el resultado, quiero mostrar que sí, existe una forma sencilla de pasar datos desde MetaTrader 5 hacia otros programas, como, por ejemplo, Excel. Sin embargo, la idea principal no es transferir datos de MetaTrader 5 a Excel, sino hacer lo contrario. Es decir, transferir datos desde Excel, o desde cualquier otro programa, hacia MetaTrader 5.
Creación de un indicador canal de Keltner con gráficos personalizados en Canvas en MQL5
En este artículo, creamos un indicador del canal de Keltner con gráficos personalizados en MQL5. Detallamos la integración de medias móviles, cálculos ATR y visualización mejorada de gráficos. También cubrimos el backtesting para evaluar el rendimiento del indicador y obtener información práctica sobre el trading.
Simulación de mercado (Parte 14): Sockets (VIII)
Muchos podrían sugerir que deberíamos dejar de usar Excel y pasar a Python directamente, haciendo uso de algunos paquetes que permitirían a Python crear un archivo de Excel para poder analizar los resultados después. Pero, como se mencionó en el artículo anterior, aunque esta solución sea la más sencilla para muchos programadores, no será bien recibida por algunos usuarios. Y, en este asunto, el usuario siempre tiene la razón. Tú, como programador, debes encontrar la forma de hacer que las cosas funcionen.
Redes neuronales en el trading: Integración de la teoría del caos en la previsión de series temporales (Attraos)
El framework de Attraos integra la teoría del caos en la previsión de series temporales a largo plazo tratándolas como proyecciones de sistemas dinámicos caóticos multidimensionales. Usando la invarianza de los atractores, el modelo aplica la reconstrucción del espacio de fases y la memoria dinámica con varias resoluciones para preservar las estructuras históricas.
Visualización de estrategias en MQL5: distribuimos los resultados de la optimización en gráficos de criterios
En este artículo, escribiremos un ejemplo de visualización del proceso de optimización e implementaremos la visualización de las tres mejores pasadas para cuatro criterios de optimización. Asimismo, ofreceremos la posibilidad de seleccionar una de las tres mejores pasadas para mostrar sus datos en tablas y gráficos.
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (Final)
El SAMformer ofrece una solución a los problemas clave del Transformer en la previsión de series temporales a largo plazo, incluida la complejidad del entrenamiento y la escasa generalización a muestras pequeñas. Su arquitectura poco profunda y la optimización con control de nitidez garantizan que se eviten los malos mínimos locales. En este artículo, proseguiremos la aplicación de enfoques utilizando MQL5 y evaluaremos su valor práctico.
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (II): Modularización
En este debate, damos un paso más allá al desglosar nuestro programa MQL5 en módulos más pequeños y manejables. Estos componentes modulares se integrarán posteriormente en el programa principal, mejorando su organización y facilidad de mantenimiento. Este enfoque simplifica la estructura de nuestro programa principal y permite reutilizar los componentes individuales en otros asesores expertos (EA) y desarrollos de indicadores. Al adoptar este diseño modular, creamos una base sólida para futuras mejoras, lo que beneficia tanto a nuestro proyecto como a la comunidad de desarrolladores en general.
Trading de arbitraje en Forex: Un bot market-maker simple de sintéticos para comenzar
Hoy vamos a desmontar mi primer robot de arbitraje: un proveedor de liquidez (si lo podemos llamar así) en activos sintéticos. Hoy en día este bot está funcionando con éxito como un módulo en un gran sistema de aprendizaje automático, pero he puesto en marcha un viejo robot de arbitraje de divisas de la nube, así que le propongo echarle un vistazo, y pensar en lo que podemos hacer con él hoy.
Cómo funciones centenarias pueden actualizar nuestras estrategias comerciales
En este artículo hablaremos de las funciones de Rademacher y Walsh. Asimismo, exploraremos formas de aplicar estas funciones para analizar series temporales financieras y estudiaremos diversas aplicaciones en el comercio.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 13): Herramienta RSI Sentinel
La evolución de los precios puede analizarse eficazmente identificando divergencias, con indicadores técnicos como el RSI que proporcionan señales de confirmación cruciales. En el siguiente artículo, explicamos cómo el análisis automatizado de divergencias del RSI puede identificar continuaciones y reversiones de tendencias, ofreciendo así información valiosa sobre el sentimiento del mercado.
Características del Wizard MQL5 que debe conocer (Parte 54): Aprendizaje por refuerzo con SAC híbrido y tensores
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que analizamos en un artículo anterior, donde también presentamos Python y ONNX en esta serie como enfoques eficientes para entrenar redes. Revisamos el algoritmo con el objetivo de aprovechar los tensores, gráficos computacionales que a menudo se utilizan en Python.
Automatización de estrategias de trading en MQL5 (Parte 7): Creación de un EA para el comercio en cuadrícula con escalado dinámico de lotes
En este artículo, creamos un asesor experto de trading con cuadrículas en MQL5 que utiliza el escalado dinámico de lotes. Cubrimos el diseño de la estrategia, la implementación del código y el proceso de backtesting. Por último, compartimos conocimientos clave y mejores prácticas para optimizar el sistema de comercio automatizado.
Automatización de estrategias de trading en MQL5 (Parte 10): Desarrollo de la estrategia Trend Flat Momentum
En este artículo, desarrollamos un Asesor Experto en MQL5 para la estrategia Trend Flat Momentum. Combinamos un cruce de dos medias móviles con filtros de impulso RSI y CCI para generar señales de trading. También cubrimos las pruebas retrospectivas y las posibles mejoras para el rendimiento en el mundo real.
Algoritmo de optimización de neuroboides — Neuroboids Optimization Algorithm (NOA)
Hoy hablaremos de una nueva metaheurística de optimización inspirada en la naturaleza: el NOA (Neuroboids Optimisation Algorithm), que combina principios de inteligencia colectiva y redes neuronales. A diferencia de los métodos clásicos, el algoritmo usa una población de "neuroboides" autodidactas, cada uno con su propia red neuronal que adapta la estrategia de búsqueda en tiempo real. En el artículo se revela la arquitectura del algoritmo, los mecanismos de autoaprendizaje de los agentes y las perspectivas de aplicación de este enfoque híbrido a problemas complejos de optimización.
Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)
Los búferes de reproducción en el aprendizaje por refuerzo son especialmente importantes con algoritmos fuera de política como DQN o SAC. Esto pone entonces el foco en el proceso de muestreo de este búfer de memoria. Mientras que las opciones predeterminadas con SAC, por ejemplo, utilizan una selección aleatoria de este búfer, los búferes de reproducción de experiencia priorizada ajustan esto mediante un muestreo del búfer basado en una puntuación TD. Repasamos la importancia del aprendizaje por refuerzo y, como siempre, examinamos solo esta hipótesis (no la validación cruzada) en un asesor experto creado por un asistente.
El filtro de Kalman para estrategias de reversión a la media en Forex
El filtro de Kalman es un algoritmo recursivo utilizado en el trading algorítmico para estimar el estado real de una serie temporal financiera filtrando el ruido de los movimientos de precios. Actualiza dinámicamente las predicciones basándose en nuevos datos del mercado, lo que lo hace valioso para estrategias adaptativas como la reversión a la media. Este artículo presenta primero el filtro de Kalman, cubriendo su cálculo e implementación. A continuación, aplicamos el filtro a una estrategia clásica de reversión a la media en el mercado de divisas como ejemplo. Por último, realizamos diversos análisis estadísticos comparando el filtro con una media móvil en diferentes pares de divisas.
Trading de arbitraje en Forex: Análisis de movimientos de divisas sintéticas y reversión a la media
En este artículo, intentaremos analizar los movimientos de divisas sintéticas utilizando Python + MQL5 y comprender cómo es el arbitraje de divisas real hoy en día. Asimismo, presentaremos cierto código Python listo para analizar divisas sintéticas y más información sobre qué son las divisas sintéticas en Forex.
Automatización de estrategias de trading en MQL5 (Parte 11): Desarrollo de un sistema de negociación de cuadrícula multinivel
En este artículo, desarrollamos un sistema EA de trading de cuadrícula multinivel utilizando MQL5, centrándonos en la arquitectura y el diseño del algoritmo que hay detrás de las estrategias de trading de cuadrícula. Exploramos la implementación de una lógica de red multicapa y técnicas de gestión de riesgos para hacer frente a las condiciones variables del mercado. Por último, ofrecemos explicaciones detalladas y consejos prácticos para guiarle en la creación, prueba y perfeccionamiento del sistema de negociación automatizado.
Arbitraje de swaps en Forex: Reunimos un portafolio sintético y creamos un flujo de swaps estable
¿Quiere saber cómo aprovechar los spreads de los tipos de interés? En este artículo, veremos cómo usar el arbitraje de swaps en Forex para generar unos ingresos constantes cada noche construyendo un portafolio resistente a las fluctuaciones del mercado.
Aplicación de la teoría de juegos a algoritmos comerciales
Hoy crearemos un asesor comercial adaptativo de autoaprendizaje basado en DQN de aprendizaje automático, con inferencia causal multivariante, que negociará con éxito simultáneamente en 7 pares de divisas, con agentes de diferentes pares intercambiando información entre sí.