Vereinfachung von Datenbanken in MQL5 (Teil 1): Einführung in Datenbanken und SQL
Wir erforschen, wie man Datenbanken in MQL5 mit den systemeigenen Funktionen der Sprache manipuliert. Wir decken alles ab, vom Erstellen, Einfügen, Aktualisieren und Löschen von Tabellen bis zum Import und Export von Daten, alles mit Beispielcode. Der Inhalt dient als solide Grundlage für das Verständnis der internen Mechanismen des Datenzugriffs und ebnet den Weg für die Diskussion von ORM, die wir in MQL5 aufbauen werden.
Die Grenzen des maschinellen Lernens überwinden (Teil 3): Eine neue Perspektive auf irreduzible Fehler
Dieser Artikel wirft einen neuen Blick auf eine verborgene, geometrische Fehlerquelle, die im Stillen jede Vorhersage Ihrer Modelle beeinflusst. Indem wir die Messung und Anwendung von Prognosen des maschinellen Lernens im Handel überdenken, zeigen wir, wie diese übersehene Perspektive schärfere Entscheidungen, höhere Renditen und einen intelligenteren Umgang mit Modellen, die wir bereits zu verstehen glaubten, ermöglichen kann.
Entwicklung des Price Action Analysis Toolkit (Teil 39): Automatisierung der BOS- und ChoCH-Erkennung in MQL5
Dieser Artikel stellt das Fractal Reaction System vor, ein kompaktes MQL5-System, das fraktale Pivots in umsetzbare Marktstruktursignale umwandelt. Der EA verwendet eine geschlossene Balkenlogik, um ein erneutes Zeichnen zu vermeiden, erkennt Change-of-Character-Warnungen (ChoCH) und bestätigt Breaks-of-Structure (BOS), zeichnet persistente Chartobjekte und protokolliert/meldet jedes bestätigte Ereignis (Desktop, Mobile und Sound). Lesen Sie weiter, um den Algorithmusentwurf, Implementierungshinweise, Testergebnisse und den vollständigen EA-Code zu erfahren, damit Sie den Detektor selbst kompilieren, testen und einsetzen können.
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 1): Entwickeln eines nutzerdefinierten Indikators
Dieser Artikel ist der erste Teil einer zweiteiligen Serie, die praktische Fähigkeiten und Best Practices für das Schreiben von nutzerdefinierten Indikatoren in MQL5 vermitteln soll. Anhand des Heikin Ashi als Arbeitsbeispiel untersucht der Artikel die Theorie hinter den Heikin Ashi-Charts, erklärt, wie Heikin Ashi-Kerzen berechnet werden, und demonstriert ihre Anwendung in der technischen Analyse. Das Herzstück ist eine schrittweise Anleitung zur Entwicklung eines voll funktionsfähigen Heikin Ashi-Indikators von Grund auf, mit klaren Erklärungen, die dem Leser helfen zu verstehen, was zu programmieren ist und warum. Dieses Grundwissen bildet die Grundlage für den zweiten Teil, in dem wir einen Expert Advisor erstellen werden, der auf der Grundlage der Heikin Ashi-Logik handelt.
Automatisieren von Handelsstrategien in MQL5 (Teil 31): Erstellung eines Price Action 3 Drives Harmonic Pattern Systems
In diesem Artikel entwickeln wir ein 3 Drives Pattern System in MQL5, das steigende und fallende harmonische Muster der 3 Drives mit Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit anpassbaren Einstiegs-, Stop-Loss- und Take-Profit-Levels basierend auf vom Nutzer ausgewählten Optionen ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte.
Vom Neuling zum Experten: Animierte Schlagzeilen mit MQL5 (X) – Multiple Symbol Chart View für den Nachrichtenhandel
Heute werden wir ein System zur Darstellung mehrerer Charts mit Hilfe von Chartobjekten entwickeln. Ziel ist es, den Nachrichtenhandel durch die Anwendung von MQL5-Algorithmen zu verbessern, die dazu beitragen, die Reaktionszeit des Händlers in Zeiten hoher Volatilität, wie z. B. bei wichtigen Nachrichten, zu verkürzen. In diesem Fall bieten wir Händlern eine integrierte Möglichkeit, mehrere wichtige Symbole mit einem einzigen All-in-One-Tool für den Nachrichtenhandel zu überwachen. Unsere Arbeit entwickelt sich mit dem News Headline EA kontinuierlich weiter. Er verfügt nun über eine wachsende Anzahl von Funktionen, die sowohl für Händler, die vollautomatische Systeme verwenden, als auch für diejenigen, die den manuellen Handel mit Hilfe von Algorithmen bevorzugen, einen echten Mehrwert darstellen. Klicken Sie sich durch und beteiligen Sie sich an dieser Diskussion, um mehr Wissen, Einblicke und praktische Ideen zu erhalten.
Selbstoptimierende Expert Advisors in MQL5 (Teil 13): Eine sanfte Einführung in die Kontrolltheorie mit Hilfe der Matrixfaktorisierung
Die Finanzmärkte sind unberechenbar, und Handelsstrategien, die in der Vergangenheit profitabel erschienen, brechen unter realen Marktbedingungen oft zusammen. Das liegt daran, dass die meisten Strategien, wenn sie einmal eingeführt sind, nicht mehr angepasst werden oder aus ihren Fehlern lernen können. Mit Hilfe von Ideen aus der Kontrolltheorie können wir mit Hilfe von Rückkopplungsreglern beobachten, wie unsere Strategien mit den Märkten interagieren und ihr Verhalten auf Rentabilität ausrichten. Unsere Ergebnisse zeigen, dass das Hinzufügen eines Feedback-Controllers zu einer einfachen gleitenden Durchschnittsstrategie die Gewinne verbessert, das Risiko reduziert und die Effizienz erhöht, was beweist, dass dieser Ansatz ein großes Potenzial für Handelsanwendungen hat.
Automatisieren von Handelsstrategien in MQL5 (Teil 30): Erstellen eines harmonischen AB-CD-Preisaktionsmusters mit visuellem Feedback
In diesem Artikel entwickeln wir einen AB=CD Pattern EA in MQL5, der harmonische Auf- und Abwärtsmuster von AB=CD mit Hilfe von Umkehrpunkten und Fibonacci-Ratios identifiziert und Trades mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte.
Vom Neuling zum Experten: Detaillierte Handelsberichte mit Reporting EA beherrschen
In diesem Artikel befassen wir uns mit der Verbesserung der Details von Handelsberichten und der Übermittlung des endgültigen Dokuments per E-Mail im PDF-Format. Dies stellt eine Weiterentwicklung unserer bisherigen Arbeit dar, da wir weiterhin erforschen, wie wir die Leistungsfähigkeit von MQL5 und Python nutzen können, um Handelsberichte in den bequemsten und professionellsten Formaten zu erstellen und zu planen. Nehmen Sie an dieser Diskussion teil und erfahren Sie mehr über die Optimierung der Erstellung von Handelsberichten innerhalb des MQL5-Ökosystems.
Entwicklung eines individuellen Indikators für die Marktstimmung
In diesem Artikel entwickeln wir einen nutzerdefinierten Indikator für die Marktstimmung, um die Bedingungen in aufwärts, abwärts, mehr und weniger Risiko oder neutral zu klassifizieren. Durch die Verwendung von mehreren Zeitrahmen kann der Indikator Händlern eine klarere Perspektive der allgemeinen Markttendenz und der kurzfristigen Bestätigungen bieten.
MetaTrader trifft auf Google Sheets mit Pythonanywhere: Ein Leitfaden für einen sicheren Datenfluss
Dieser Artikel zeigt einen sicheren Weg, um MetaTrader-Daten in Google Sheets zu exportieren. Google Sheet ist die wertvollste Lösung, da es cloudbasiert ist und die dort gespeicherten Daten jederzeit und von überall abgerufen werden können. So können Händler jederzeit und von jedem Ort aus auf die in Google Sheet exportierten Handels- und zugehörigen Daten zugreifen und weitere Analysen für den zukünftigen Handel durchführen.
Chart-Synchronisation für eine einfachere technische Analyse
Die Chart-Synchronisierung für eine einfachere technische Analyse ist ein Tool, das sicherstellt, dass alle Chart-Zeitrahmen für ein einzelnes Symbol konsistente grafische Objekte wie Trendlinien, Rechtecke oder Indikatoren über verschiedene Zeitrahmen hinweg anzeigen. Aktionen wie Schwenken, Zoomen oder Symbolwechsel werden in allen synchronisierten Charts gespiegelt, sodass Händler nahtlos denselben Preisaktionskontext in mehreren Zeitrahmen anzeigen und vergleichen können.
Automatisieren von Handelsstrategien in MQL5 (Teil 29): Erstellung eines Preisaktionssystems mit dem harmonischen Muster von Gartley
In diesem Artikel entwickeln wir ein System des Gartley-Musters in MQL5, das harmonische Auf- und Abwärtsmuster von Gartley mit Hilfe von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte wie Dreiecke, Trendlinien und Beschriftungen, um die XABCD-Musterstruktur klar darzustellen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 4): Modellaktualisierung in Echtzeit
Dieser Artikel beschreibt eine einfache, aber umfassende statistische Arbitrage-Pipeline für den Handel mit einem Korb von kointegrierten Aktien. Es enthält ein voll funktionsfähiges Python-Skript zum Herunterladen und Speichern von Daten, Korrelations-, Kointegrations- und Stationaritätstests sowie eine Beispielimplementierung des Metatrader 5 Service zur Aktualisierung der Datenbank und des entsprechenden Expert Advisors. Einige Designentscheidungen werden hier zu Referenzzwecken und als Hilfe bei der Reproduktion des Experiments dokumentiert.
Verbessern Sie Ihren Handel mit Smart Money Konzepten (SMC): OB, BOS und FVG
Verbessern Sie Ihren Handel mit Smart Money Konzepten (SMC) durch die Kombination von Order Blocks (OB), Break of Structure (BOS) und Fair Value Gaps (FVG) in einem leistungsstarken EA. Wählen Sie die automatische Strategieausführung oder konzentrieren Sie sich auf jedes einzelne SMC-Konzept, um flexibel und präzise zu handeln.
Automatisieren von Handelsstrategien in MQL5 (Teil 28): Erstellen eines Price Action Bat Harmonic Patterns mit visuellem Feedback
In diesem Artikel entwickeln wir ein Bat-Pattern-System in MQL5, das Auf- und Abwärtsmuster von Bat-Harmonic unter Verwendung von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels auslöst, ergänzt durch visuelles Feedback durch Chart-Objekte
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 79): Verwendung von Gator-Oszillator und Akkumulations-/Distributions-Oszillator mit überwachtem Lernen
Im letzten Beitrag haben wir die Paarung von Gator-Oszillator und Akkumulations-/Distributions-Oszillator in ihrer typischen Einstellung der von ihnen erzeugten Rohsignale betrachtet. Diese beiden Indikatoren sind als Trend- bzw. Volumenindikatoren zu verstehen. Im Anschluss an diesen Teil untersuchen wir die Auswirkungen, die das überwachte Lernen auf die Verbesserung einiger der von uns untersuchten Merkmalsmuster haben kann. Unser überwachter Lernansatz ist ein CNN, der mit Kernelregression und Skalarproduktähnlichkeit arbeitet, um seine Kernel und Kanäle zu dimensionieren. Wie immer tun wir dies in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 3): Datenbank-Einrichtung
In diesem Artikel wird ein Beispiel für die Implementierung eines MQL5-Dienstes zur Aktualisierung einer neu erstellten Datenbank vorgestellt, die als Quelle für die Datenanalyse und für den Handel mit einem Korb kointegrierter Aktien dient. Der Grundgedanke des Datenbankentwurfs wird ausführlich erläutert und das Datenwörterbuch wird als Referenz dokumentiert. MQL5- und Python-Skripte werden für die Erstellung der Datenbank, die Initialisierung des Schemas und die Eingabe der Marktdaten bereitgestellt.
MetaTrader 5 Machine Learning Blueprint (Teil 2): Kennzeichnung von Finanzdaten für maschinelles Lernen
In diesem zweiten Teil der MetaTrader 5 Machine Learning Blueprint-Serie erfahren Sie, warum einfache Bezeichnungen Ihre Modelle in die Irre führen können und wie Sie fortgeschrittene Techniken wie die Triple-Barrier- und Trend-Scanning-Methode anwenden, um robuste, risikobewusste Ziele zu definieren. Dieser praktische Leitfaden ist vollgepackt mit praktischen Python-Beispielen, die diese rechenintensiven Techniken optimieren, und zeigt Ihnen, wie Sie verrauschte Marktdaten in zuverlässige Kennzeichnungen umwandeln können, die die realen Handelsbedingungen widerspiegeln.
Beherrschung von Protokollaufzeichnungen (Teil 10): Vermeidung von Log Replay durch Implementierung einer Unterdrückung
Wir haben ein System zur Unterdrückung von Protokollen in der Logify-Bibliothek erstellt. Es wird beschrieben, wie die Klasse CLogifySuppression das Konsolenrauschen durch Anwendung konfigurierbarer Regeln reduziert, um sich wiederholende oder irrelevante Meldungen zu vermeiden. Wir behandeln auch das externe Konfigurations-Framework, Validierungsmechanismen und umfassende Tests, um Robustheit und Flexibilität bei der Protokollerfassung während der Bot- oder Indikatorentwicklung zu gewährleisten.
Statistische Arbitrage durch kointegrierte Aktien (Teil 2): Expert Advisor, Backtests und Optimierung
In diesem Artikel wird eine Beispielimplementierung eines Expert Advisors für den Handel mit einem Korb von vier Nasdaq-Aktien vorgestellt. Die Aktien wurden zunächst anhand von Pearson-Korrelationstests gefiltert. Die gefilterte Gruppe wurde dann mit Johansen-Tests auf Kointegration geprüft. Schließlich wurde der kointegrierte Spread mit dem ADF- und dem KPSS-Test auf Stationarität geprüft. Hier sehen wir einige Anmerkungen zu diesem Prozess und die Ergebnisse der Backtests nach einer kleinen Optimierung.
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (IX) – Verwaltung mehrerer Symbole in einem einzigen Chart für den Nachrichtenhandel
Der Handel mit Nachrichten erfordert aufgrund der erhöhten Volatilität häufig die Verwaltung mehrerer Positionen und Symbole in sehr kurzer Zeit. In der heutigen Diskussion gehen wir auf die Herausforderungen des Multi-Symbol-Handels ein, indem wir diese Funktion in unseren News Headline EA integrieren. Seien Sie dabei, wenn wir untersuchen, wie der algorithmische Handel mit MQL5 den Multi-Symbol-Handel effizienter und leistungsfähiger macht.
Formulierung eines dynamischen Multi-Paar-EA (Teil 4): Volatilität und Risikoanpassung
In dieser Phase erfolgt die Feinabstimmung Ihres Multi-Pair-EAs, um die Handelsgröße und das Risiko in Echtzeit anhand von Volatilitätsmetriken wie ATR anzupassen und so die Konsistenz, den Schutz und die Leistung unter verschiedenen Marktbedingungen zu verbessern.
Selbstoptimierende Expert Advisors in MQL5 (Teil 12): Aufbau von linearen Klassifikatoren durch Matrixfaktorisierung
Dieser Artikel befasst sich mit der leistungsfähigen Rolle der Matrixfaktorisierung im algorithmischen Handel, insbesondere in MQL5-Anwendungen. Von Regressionsmodellen bis hin zu Multi-Target-Klassifikatoren gehen wir durch praktische Beispiele, die zeigen, wie einfach diese Techniken mit Hilfe von integrierten MQL5-Funktionen integriert werden können. Ganz gleich, ob Sie die Kursrichtung vorhersagen oder das Verhalten von Indikatoren modellieren wollen, dieser Leitfaden schafft eine solide Grundlage für den Aufbau intelligenter Handelssysteme mit Hilfe von Matrixmethoden.
Parafrac-Oszillator: Kombination von Parabel- und Fraktalindikator
Wir werden untersuchen, wie der Parabolic SAR und der Fractal-Indikator kombiniert werden können, um einen neuen oszillatorbasierten Indikator zu schaffen. Durch die Integration der einzigartigen Stärken beider Instrumente können Händler eine raffiniertere und effektivere Handelsstrategie entwickeln.
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (VIII) – Schnellhandelsschaltflächen für den Nachrichtenhandel
Während algorithmische Handelssysteme automatisierte Vorgänge verwalten, bevorzugen viele Nachrichtenhändler und Scalper bei aufsehenerregenden Nachrichtenereignissen und schnelllebigen Marktbedingungen eine aktive Steuerung, die eine schnelle Auftragsausführung und -verwaltung erfordert. Dies unterstreicht den Bedarf an intuitiven Front-End-Tools, die Echtzeit-Nachrichtenfeeds, Wirtschaftskalenderdaten, Indikatoreinblicke, KI-gesteuerte Analysen und reaktionsschnelle Handelskontrollen integrieren.
Automatisieren von Handelsstrategien in MQL5 (Teil 27): Erstellen eines Price Action Harmonic Pattern der Krabbe mit visuellem Feedback
In diesem Artikel entwickeln wir ein Crab Harmonic Pattern System in MQL5, das harmonische Auf- und Abwärtsmuster der Krabbe oder „crab“ mit Hilfe von Umkehrpunkten und Fibonacci-Verhältnisse identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels auslöst. Wir integrieren visuelles Feedback durch Chart-Objekte wie Dreiecke und Trendlinien, um die Struktur des XABCD-Musters und die Handelsniveaus anzuzeigen.
Aufbau eines Handelssystems (Teil 2): Die Wissenschaft der Positionsbestimmung
Selbst bei einem System mit positiver Erwartungshaltung entscheidet die Positionsgröße darüber, ob Sie Erfolg haben oder zusammenbrechen. Das ist der Dreh- und Angelpunkt des Risikomanagements – die Umsetzung statistischer Erkenntnisse in reale Ergebnisse bei gleichzeitigem Schutz Ihres Kapitals.
Entwicklung des Price Action Analysis Toolkit (Teil 37): Sentiment Tilt Meter
Die Marktstimmung ist eine der am meisten übersehenen, aber dennoch mächtigen Kräfte, die die Kursentwicklung beeinflussen. Während sich die meisten Händler auf nachlaufende Indikatoren oder Vermutungen verlassen, verwandelt der Sentiment Tilt Meter (STM) EA rohe Marktdaten in klare, visuelle Hinweise, die in Echtzeit anzeigen, ob der Markt nach oben oder unten tendiert oder neutral bleibt. Dies erleichtert die Bestätigung von Geschäften, die Vermeidung von Fehleinstiegen und eine bessere Zeitplanung der Marktteilnahme.
Automatisieren von Handelsstrategien in MQL5 (Teil 26): Aufbau eines Pin Bar Averaging Systems für den Handel mit mehreren Positionen
In diesem Artikel entwickeln wir ein Pin Bar Averaging-System in MQL5, das Pin Bar-Muster erkennt, um Handelsgeschäfte zu initiieren, und eine Averaging-Strategie für das Multipositionsmanagement einsetzt, die durch Trailing-Stops und Breakeven-Anpassungen ergänzt wird. Wir integrieren anpassbare Parameter mit einem Dashboard zur Echtzeitüberwachung von Positionen und Gewinnen.
MetaTrader Tick-Info-Zugang von MQL5-Diensten zur Python-Anwendung über Sockets
Manchmal ist nicht alles in der MQL5-Sprache programmierbar. Und selbst wenn es möglich wäre, bestehende fortgeschrittene Bibliotheken in MQL5 zu konvertieren, wäre dies sehr zeitaufwändig. Dieser Artikel versucht zu zeigen, dass wir die Abhängigkeit vom Windows-Betriebssystem umgehen können, indem wir Tick-Informationen wie Bid, Ask und Time mit MetaTrader-Diensten über Sockets an eine Python-Anwendung übertragen.
Entwicklung des Price Action Analysis Toolkit (Teil 36): Direkter Python-Zugang zu MetaTrader 5 Market Streams freischalten
Schöpfen Sie das volle Potenzial Ihres MetaTrader 5 Terminals aus, indem Sie das datenwissenschaftliche Ökosystem von Python und die offizielle MetaTrader 5 Client-Bibliothek nutzen. Dieser Artikel zeigt, wie man Live-Tick- und Minutenbalken-Daten direkt in den Parquet-Speicher authentifiziert und streamt, mit Ta und Prophet ein ausgefeiltes Feature-Engineering durchführt und ein zeitabhängiges Gradient-Boosting-Modell trainiert. Anschließend setzen wir einen leichtgewichtigen Flask-Dienst ein, um Handelssignale in Echtzeit zu liefern. Egal, ob Sie ein hybrides Quant-Framework aufbauen oder Ihren EA mit maschinellem Lernen erweitern, Sie erhalten eine robuste Ende-zu-Ende-Pipeline für den datengesteuerten algorithmischen Handel an die Hand.
Automatisieren von Handelsstrategien in MQL5 (Teil 25): Trendlinien-Händler mit der Anpassung der kleinsten Quadrate und dynamischer Signalgenerierung
In diesem Artikel entwickeln wir ein Trendlinien-Handelsprogramm, das die kleinsten Quadrate verwendet, um Unterstützungs- und Widerstandstrendlinien zu erkennen, dynamische Kauf- und Verkaufssignale auf der Grundlage von Preisberührungen zu erzeugen und Positionen auf der Grundlage der erzeugten Signale zu eröffnen.
CRUD-Operationen in Firebase mit MQL
Dieser Artikel bietet eine Schritt-für-Schritt-Anleitung zur Beherrschung von CRUD-Operationen (Create, Read, Update, Delete) in Firebase, wobei der Schwerpunkt auf der Echtzeitdatenbank und dem Firestore liegt. Entdecken Sie, wie Sie die SDK-Methoden von Firebase nutzen können, um Daten in Web- und Mobilanwendungen effizient zu verwalten, vom Hinzufügen neuer Datensätze bis zum Abfragen, Ändern und Löschen von Einträgen. Lernen Sie praktische Code-Beispiele und Best Practices für die Strukturierung und Verarbeitung von Daten in Echtzeit kennen, die es Entwicklern ermöglichen, dynamische, skalierbare Anwendungen mit der flexiblen NoSQL-Architektur von Firebase zu erstellen.
Einführung in MQL5 (Teil 20): Einführung in „Harmonic Patterns“
In diesem Artikel befassen wir uns mit den Grundlagen der harmonischen Muster, ihren Strukturen und ihrer Anwendung im Handel. Sie lernen etwas über Fibonacci-Retracements, Extensions und wie man die Erkennung harmonischer Muster in MQL5 implementiert, was die Grundlage für den Aufbau fortgeschrittener Handelswerkzeuge und Expert Advisors bildet.
MQL5-Handelswerkzeuge (Teil 8): Verbessertes informatives Dashboard mit verschiebbaren und minimierbaren Funktionen
In diesem Artikel entwickeln wir ein erweitertes Informations-Dashboard, das den vorigen Teil durch die Hinzufügung von verschiebbaren und minimierbaren Funktionen für eine verbesserte Nutzerinteraktion aufwertet, während die Echtzeitüberwachung von Multi-Symbol-Positionen und Kontometrien beibehalten wird.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 78): Gator- und AD-Oszillator-Strategien für Marktresilienz
Der Artikel stellt die zweite Hälfte eines strukturierten Ansatzes für den Handel mit dem Gator Oscillator und der Akkumulation/Distribution vor. Durch die Einführung von fünf neuen Mustern zeigt der Autor, wie man falsche Bewegungen herausfiltert, frühe Kehrtwendungen erkennt und Signale über verschiedene Zeitrahmen hinweg abgleicht. Mit klaren Programmierbeispielen und Leistungstests verbindet das Material Theorie und Praxis für MQL5-Entwickler.
Einführung in MQL5 (Teil 19): Automatisiertes Erkennen von Wolfe-Wellen
Dieser Artikel zeigt, wie man programmatisch steigende und fallende Muster der Wolfe-Wellen identifiziert und sie mit MQL5 handelt. Wir werden untersuchen, wie man die Strukturen der Wolfe-Wellen programmatisch identifiziert und darauf basierenden Handel mit MQL5 ausführt. Dazu gehören die Erkennung wichtiger Umkehr-Punkte, die Validierung von Musterregeln und die Vorbereitung des EA, um auf die ermittelten Signale zu reagieren.
Aufbau eines Handelssystems (Teil 1): Ein quantitativer Ansatz
Viele Händler bewerten Strategien auf der Grundlage kurzfristiger Ergebnisse und geben profitable Systeme oft zu früh auf. Die langfristige Rentabilität hängt jedoch von einer positiven Erwartungshaltung durch eine optimierte Gewinnrate und ein optimiertes Risiko-Ertrags-Verhältnis ab, zusammen mit einer disziplinierten Positionsgröße. Diese Grundsätze können mit Hilfe von Monte-Carlo-Simulationen in Python mit bewährten Metriken validiert werden, um zu beurteilen, ob eine Strategie robust ist oder im Laufe der Zeit wahrscheinlich scheitern wird.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 77): Verwendung des Gator-Oszillators und des Akkumulations-/Distributions-Oszillators
Der Gator Oscillator von Bill Williams und der Accumulation/Distribution Oscillator sind ein weiteres Indikatorpaar, das harmonisch in einem MQL5 Expert Advisor verwendet werden kann. Wir verwenden den Gator-Oszillator, weil er in der Lage ist, Trends zu bestätigen, während der A/D-Oszillator verwendet wird, um die Trends durch die Überprüfung des Volumens zu bestätigen. Bei der Erkundung dieser Indikatorenkombination verwenden wir wie immer den MQL5-Assistenten, um ihr Potenzial zu ermitteln und zu testen.