关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
将您自己的LLM集成到EA中(第1部分):硬件和环境部署

将您自己的LLM集成到EA中(第1部分):硬件和环境部署

随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
掌握ONNX:MQL5交易者的游戏规则改变者

掌握ONNX:MQL5交易者的游戏规则改变者

深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏
preview
神经网络变得轻松(第五十部分):软性扮演者-评价者(模型优化)

神经网络变得轻松(第五十部分):软性扮演者-评价者(模型优化)

在上一篇文章中,我们实现了软性扮演者-评论者算法,但未能训练出一个可盈利的模型。在此,我们将优化先前创建的模型,以期获得所需的结果。
preview
时间序列挖掘的数据标签(第3部分):使用标签数据的示例

时间序列挖掘的数据标签(第3部分):使用标签数据的示例

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
MQL5 中的范畴论 (第 13 部分):数据库制程的日历事件

MQL5 中的范畴论 (第 13 部分):数据库制程的日历事件

本文在 MQL5 中遵循范畴论实现秩序,研究如何在 MQL5 中结合数据库制程进行分类。我们介绍了当辨别交易相关的文本(字符串)信息时,如何把数据库制程概念与范畴论相结合。日历事件是焦点。
preview
神经网络变得轻松(第四十九部分):软性扮演者-评价者

神经网络变得轻松(第四十九部分):软性扮演者-评价者

我们继续讨论解决连续动作空间问题的强化学习算法。在本文中,我将讲演软性扮演者-评论者(SAC)算法。SAC 的主要优点是拥有查找最佳策略的能力,不仅令预期回报最大化,而且拥有最大化的动作熵(多样性)。
preview
时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集

时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法

在上一篇文章中,我们概述了 DDPG 方法,它允许在连续动作空间中训练模型。然而,与其它 Q-学习方法一样,DDPG 容易高估 Q-函数的数值。这个问题往往会造成训练代理者时选择次优策略。在本文中,我们将研究一些克服上述问题的方式。
preview
MQL5 中的范畴论 (第 12 部分):秩序(Orders)

MQL5 中的范畴论 (第 12 部分):秩序(Orders)

本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
preview
神经网络变得轻松(第四十七部分):连续动作空间

神经网络变得轻松(第四十七部分):连续动作空间

在本文中,我们扩展了代理者的任务范围。训练过程将包括一些资金和风险管理等方面,这是任何交易策略不可或缺的部分。
preview
神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

在本文中,我们要看看另一种强化学习方式。 它被称为条件导向目标强化学习(GCRL)。 按这种方式,代理者经过训练,可以在特定场景中达成不同的目标。
preview
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
preview
神经网络变得轻松(第四十五部分):训练状态探索技能

神经网络变得轻松(第四十五部分):训练状态探索技能

在没有明确奖励函数的情况下,实用的训练技能就是分层强化学习的主要挑战之一。 以前,我们已领略了解决此问题的两种算法。 但环境研究的完整性问题仍然悬而未决。 本文演示了一种不同的技能训练方式,其可取决于系统的当前状态直接使用。
preview
利用回归衡量度评估 ONNX 模型

利用回归衡量度评估 ONNX 模型

回归是一项依据未标记样本预测真实数值的任务。 所谓的回归衡量度则是用来评估回归模型的预测准确性。
preview
神经网络变得轻松(第四十四部分):动态学习技能

神经网络变得轻松(第四十四部分):动态学习技能

在上一篇文章中,我们讲解了 DIAYN 方法,它提供了学习各种技能的算法。 获得的技能可用在各种任务。 但这些技能可能非常难以预测,而这可能令它们难以运用。 在本文中,我们要研究一种针对学习可预测技能的算法。
preview
时间序列的频域表示:功率谱

时间序列的频域表示:功率谱

在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。
preview
神经网络变得轻松(第四十三部分):无需奖励函数精通技能

神经网络变得轻松(第四十三部分):无需奖励函数精通技能

强化学习的问题在于需要定义奖励函数。 它可能很复杂,或难以形式化。 为了定解这个问题,我们正在探索一些基于行动和基于环境的方式,无需明确的奖励函数即可学习技能。
preview
神经网络变得轻松(第四十二部分):模型拖延症、原因和解决方案

神经网络变得轻松(第四十二部分):模型拖延症、原因和解决方案

在强化学习的背景下,模型拖延症可能由多种原因引起。 本文研究了模型拖延症的一些可能原因,以及克服它们的方法。
preview
神经网络变得轻松(第四十部分):在大数据上运用 Go-Explore

神经网络变得轻松(第四十部分):在大数据上运用 Go-Explore

本文讨论 Go-Explore 算法覆盖长周期训练的运用,因为随着训练时间的增加,随机动作选择策略也许不会导致可盈利验算。
preview
神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。
preview
MQL5 中的矩阵和向量:激活函数

MQL5 中的矩阵和向量:激活函数

在此,我们将只讲述机器学习的一个方面 — 激活函数。 在人工神经网络中,神经元激活函数会根据一个或一组输入信号的数值,计算输出信号值。 我们将深入研究该过程的内部运作。
preview
在类中包装 ONNX 模型

在类中包装 ONNX 模型

面向对象编程可以创建更紧凑、易于阅读和修改的代码。 在此,我们将会看到三个 ONNX 模型的示例。
preview
神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

强化学习中的一个关键问题是环境探索。 之前,我们已经见识到基于内在好奇心的研究方法。 今天我提议看看另一种算法:凭借分歧进行探索。
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

本文提供了一个的示例,运用感知器作为自给自足的价格预测工具,展示其一般概念和最简单的已制备智能系统,然后是其优化结果。
preview
神经网络实验(第 5 部分):常规化传输到神经网络的输入参数

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数

神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。
preview
MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
如何在 MQL5 中集成 ONNX 模型的示例

如何在 MQL5 中集成 ONNX 模型的示例

ONNX(开放神经网络交换)是一种表现神经网络的开放格式。 在本文中,我们将展示如何在一个智能交易系统中同时使用两个 ONNX 模型。
preview
MQL5 中的范畴论 (第 5 部分):均衡器

MQL5 中的范畴论 (第 5 部分):均衡器

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
如何在 MQL5 中使用 ONNX 模型

如何在 MQL5 中使用 ONNX 模型

ONNX(开放式神经网络交换)是一种开源的机器学习模型格式。 在本文中,我们将研究如何创建 CNN-LSTM 模型,来预测金融时间序列。 我们还将展示如何在 MQL5 智能系统中运用创建的 ONNX 模型。
preview
种群优化算法:类电磁算法(EM - ElectroMagnetism)

种群优化算法:类电磁算法(EM - ElectroMagnetism)

本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路

您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。
preview
种群优化算法:树苗播种和成长(SSG)算法

种群优化算法:树苗播种和成长(SSG)算法

树苗播种和成长(SSG)算法的灵感来自星球上最具韧性的生物之一,在各种条件下都表现出杰出的生存能力。
preview
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
preview
数据科学和机器学习(第 12 部分):自训练神经网络能否帮助您跑赢股市?

数据科学和机器学习(第 12 部分):自训练神经网络能否帮助您跑赢股市?

您是否厌倦了持续尝试预测股市? 您是否希望有一个水晶球来帮助您做出更明智的投资决策? 自训练神经网络可能是您一直在寻找的解决方案。 在本文中,我们将探讨这些强大的算法是否可以帮助您“乘风破浪”,并跑赢股市。 通过分析大量数据和识别形态,自训练神经网络通常可以做出比人类交易者更准确的预测。 发现如何使用这项尖端技术来最大化您的盈利,并制定更明智的投资决策。
preview
神经网络实验(第 4 部分):模板

神经网络实验(第 4 部分):模板

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。
preview
神经网络变得轻松(第三十六部分):关系强化学习

神经网络变得轻松(第三十六部分):关系强化学习

在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。
preview
种群优化算法:猴子算法(MA)

种群优化算法:猴子算法(MA)

在本文中,我将研究猴子优化算法(MA)。 这些动物克服困难障碍,并到达最难以接近的树顶的能力构成了 MA 算法思想的基础。