关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
基于预测的统计套利

基于预测的统计套利

我们将探讨统计套利,使用Python搜索具有相关性和协整性的交易品种,为皮尔逊(Pearson)系数制作一个指标,并编制一个用于交易统计套利的EA,该系统将使用Python和ONNX模型进行预测。
preview
一种采用纯MQL5语言实现的基于能量学习的特征选择算法

一种采用纯MQL5语言实现的基于能量学习的特征选择算法

本文介绍了一种在学术论文《FREL:一种稳定的特征选择算法》中描述的特征选择算法的实现,该算法被称为基于正则化能量的特征加权学习。
preview
MQL5 简介(第 6 部分):MQL5 中的数组函数新手指南 (二)

MQL5 简介(第 6 部分):MQL5 中的数组函数新手指南 (二)

开始我们 MQL5 旅程的下一阶段。在这篇深入浅出、适合初学者的文章中,我们将探讨其余的数组函数,揭开复杂概念的神秘面纱,让您能够制定高效的交易策略。我们将讨论 ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse 和 ArraySort。利用这些基本的数组函数,提升您的算法交易专业知识。加入我们的精通 MQL5 之路吧!
preview
群体优化算法:抵抗陷入局部极值(第二部分)

群体优化算法:抵抗陷入局部极值(第二部分)

我们将继续我们的实验,它的目标是研究群体优化算法在群体多样性较低时有效摆脱局部最小值并达到全局最大值的能力。提供了研究的结果。
preview
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
preview
龟壳演化算法(TSEA)

龟壳演化算法(TSEA)

这是一种受乌龟壳演化启发的独特优化算法。TSEA算法模拟了角质化皮肤区域的逐渐形成,这些区域代表了一个问题的最优解。最优解会变得更加“坚硬”,并位于更靠近外层表面的位置,而不太理想的解则保持“较软”的状态,并位于内部。该算法通过根据质量和距离对解进行聚类,从而保留了不太理想的选项,并提供了灵活性和适应性。
preview
神经网络变得简单(第 75 部分):提升轨迹预测模型的性能

神经网络变得简单(第 75 部分):提升轨迹预测模型的性能

我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。
preview
数据处理的分组方法:在MQL5中实现组合算法

数据处理的分组方法:在MQL5中实现组合算法

在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
preview
种群优化算法:鲸鱼优化算法(WOA)

种群优化算法:鲸鱼优化算法(WOA)

鲸鱼优化算法(WOA)是一种受座头鲸行为和捕食策略启发的元启发式算法。该算法的核心思想在于模仿所谓的“气泡网”捕食方法,即鲸鱼在猎物周围制造气泡,然后以螺旋运动的方式攻击猎物。
preview
种群优化算法:社群进化(ESG)

种群优化算法:社群进化(ESG)

我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。
preview
克服集成ONNX(Open Neural Network Exchange )的挑战

克服集成ONNX(Open Neural Network Exchange )的挑战

ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
preview
头脑风暴优化算法(第二部分): 多模态

头脑风暴优化算法(第二部分): 多模态

在文章的第二部分,我们将继续讨论BSO算法的实际应用,对测试函数进行测试,并将BSO的效率与其他优化方法进行比较。
preview
矩阵分解基础知识

矩阵分解基础知识

由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
您应当知道的 MQL5 向导技术(第 11 部分):数字墙

您应当知道的 MQL5 向导技术(第 11 部分):数字墙

数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。
preview
种群优化算法:鸟群算法(BSA)

种群优化算法:鸟群算法(BSA)

本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
preview
神经网络实践:割线

神经网络实践:割线

正如理论部分已经解释的那样,在使用神经网络时,我们需要使用线性回归和导数。为什么呢?原因是线性回归是现存最简单的公式之一。从本质上讲,线性回归只是一种仿射函数。然而,当我们谈论神经网络时,我们对直接线性回归的影响并不感兴趣。我们感兴趣的是生成这条直线的方程。我们对创建出的线并不感兴趣。你知道我们需要理解的主要方程吗?如果没有,我建议您阅读这篇文章来了解它。
preview
神经网络变得简单(第 74 部分):自适应轨迹预测

神经网络变得简单(第 74 部分):自适应轨迹预测

本文介绍了一种相当有效的多个体轨迹预测方法,其可适配各种环境条件。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。
preview
分歧问题:深入探讨人工智能的复杂性可解释性

分歧问题:深入探讨人工智能的复杂性可解释性

在这篇文章中,我们将探讨理解人工智能如何工作的挑战。人工智能模型经常会以难以解释的方式做出决策,这就是所谓的 "分歧问题"。这个问题是提高人工智能透明度和可信度的关键。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
群体算法的混合 -顺序结构和并行结构

群体算法的混合 -顺序结构和并行结构

在这里,我们将深入探讨优化算法混合的三个主要类型:策略混合、顺序混合和并行混合。我们将结合并测试相关的优化算法进行一系列实验。
preview
使用Python和MQL5开发机器人(第一部分):数据预处理

使用Python和MQL5开发机器人(第一部分):数据预处理

基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。
preview
使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
数据分组处理方法:在MQL5中实现多层迭代算法。

数据分组处理方法:在MQL5中实现多层迭代算法。

在本文中,我们介绍如何在MQL5中实现分组数据处理方法中的多层迭代算法。
preview
因果推理中的倾向性评分

因果推理中的倾向性评分

本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
随机数生成器质量对优化算法效率的影响

随机数生成器质量对优化算法效率的影响

在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
preview
种群优化算法:二进制遗传算法(BGA)。第 I 部分

种群优化算法:二进制遗传算法(BGA)。第 I 部分

在本文中,我们将探讨二进制遗传和其它种群算法中所用的各种方法。我们将见识到算法的主要组成部分,例如选择、交叠和突变,以及它们对优化的影响。此外,我们还将研究数据表示方法,及其对优化结果的影响。
preview
群体算法的基类作为高效优化的支柱

群体算法的基类作为高效优化的支柱

该文章代表了一种独特的研究尝试,旨在将多种群体算法组合成一个类,以简化优化方法的应用。这种方法不仅为开发新算法(包括混合变体)开辟了机会,而且还创建了一个通用的基本测试平台。它成为根据特定任务选择最佳算法的关键工具。
preview
MQL5 简介(第 5 部分):MQL5 数组函数入门指南

MQL5 简介(第 5 部分):MQL5 数组函数入门指南

在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!
preview
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
MQL5 简介(第 4 部分):掌握结构、类和时间函数

MQL5 简介(第 4 部分):掌握结构、类和时间函数

在我们的最新文章中揭开 MQL5 编程的秘密!深入了解结构、类和时间函数的基本要素,为您的编码之旅赋能。无论您是初学者还是经验丰富的开发人员,我们的指南都简化了复杂的概念,为掌握 MQL5 提供了宝贵的见解。提升你的编程技能,在算法交易领域保持领先!
preview
数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。