MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
MQL5 简介(第 9 部分):理解和使用 MQL5 中的对象

MQL5 简介(第 9 部分):理解和使用 MQL5 中的对象

学习使用当前和历史数据在 MQL5 中创建和自定义图表对象。本基于项目的指南可帮助您可视化交易并实际应用 MQL5 概念,从而更容易构建适合您交易需求的工具。
preview
从Python到MQL5:量子启发式交易系统的探索之旅

从Python到MQL5:量子启发式交易系统的探索之旅

本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。
preview
开发先进的 ICT 交易系统:在订单块指标中实现信号

开发先进的 ICT 交易系统:在订单块指标中实现信号

在本文中,您将学习如何基于订单簿交易量(市场深度)开发订单块(Order Blocks)指标,并使用缓冲区对其进行优化以提高准确性。这结束了项目的当前阶段,并为下一阶段做准备,下一阶段将包括实施风险管理类和使用指标生成的信号的交易机器人。
preview
掌握 MQL5:从入门到精通(第五部分):基本控制流操作符

掌握 MQL5:从入门到精通(第五部分):基本控制流操作符

本文探讨了用于修改程序执行流程的关键操作符:条件语句、循环和 switch 语句。利用这些操作符将使我们创建的函数表现得更加“智能”。
preview
重塑经典策略(第六部分):多时间框架分析

重塑经典策略(第六部分):多时间框架分析

在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
开发回放系统 — 市场模拟(第 13 部分):模拟器的诞生(III)

开发回放系统 — 市场模拟(第 13 部分):模拟器的诞生(III)

为了下一阶段的工作,我们将于此简化一些与操作相关的元素。 我还会解释如何让您把模拟器随机生成的内容可视化。
preview
精通日志记录(第一部分):MQL5中的基础概念与入门步骤

精通日志记录(第一部分):MQL5中的基础概念与入门步骤

欢迎开启另一段探索之旅!本文是一个特别系列的开篇之作,我们将逐步创建一个专为MQL5语言开发者量身定制的日志操作库。
preview
DoEasy. 控件 (第 22 部分): SplitContainer。 修改已创建对象的属性

DoEasy. 控件 (第 22 部分): SplitContainer。 修改已创建对象的属性

在本文中,我将实现更改新近创建的 SplitContainer 控件的属性和外观的功能。
preview
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
preview
如何使用 MetaTrader 和 Google Sheets 创建交易日志

如何使用 MetaTrader 和 Google Sheets 创建交易日志

使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
preview
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
preview
在 MQL5 中创建每日回撤限制器 EA

在 MQL5 中创建每日回撤限制器 EA

本文从详细的角度讨论了如何基于交易算法实现 EA 交易系统的创建。这有助于在 MQL5 中实现系统自动化,并控制每日回撤。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
流动性攫取交易策略

流动性攫取交易策略

流动性攫取交易策略是智能资金概念(SMC)的核心组成部分,旨在识别并利用市场中机构投资者的操作行为。该策略聚焦于高流动性区域(如支撑位或阻力位),在这些区域,大额订单可引发价格波动,随后市场恢复原有趋势。本文将详细阐释流动性攫取的概念,并概述如何在MQL5中开发流动性攫取交易策略的智能交易系统(EA)。
preview
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
preview
开发多币种 EA 交易 (第 5 部分):可变仓位大小

开发多币种 EA 交易 (第 5 部分):可变仓位大小

在前面的部分中,我们正在开发的智能交易系统 (EA) 只能使用固定的仓位大小进行交易。这对于测试来说是可以接受的,但在真实账户交易时并不建议这样做。让我们能够使用可变的仓位大小进行交易。
preview
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
preview
非平稳过程和伪回归

非平稳过程和伪回归

本文基于蒙特卡洛模拟,展示了回归分析非平稳过程时产生的伪回归现象。
preview
如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。
preview
大气云模型优化(ACMO):理论

大气云模型优化(ACMO):理论

本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
preview
基于三维反转形态的算法交易

基于三维反转形态的算法交易

在三维K线上探索自动化交易的新世界。基于多维价格K线的交易机器人是什么样的?三维K线中的“黄色”簇群能否预测趋势反转?多维交易是什么样的?
preview
您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数

您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数

市场促进指数是比尔·威廉姆斯(Bill Williams)的另一个指标,旨在衡量价格走势与成交量联动的效率。一如既往,我们将在由向导汇编信号类的范畴内分析该指标的各种形态,并为各种形态呈现多种测试报告和分析。
preview
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
preview
从基础到中级:定义(一)

从基础到中级:定义(一)

在这篇文章中,我们将做一些许多人会觉得奇怪和完全脱离上下文的事情,但如果使用得当,这将使你的学习更加有趣:我们将能够根据这里显示的内容构建非常有趣的东西。这将使您更好地理解 MQL5 语言的语法。此处提供的材料仅用于教育目的。它不应以任何方式被视为最终应用程序。其目的不是探索所提出的概念。
preview
使用 MetaTrader 5 在 Python 中查找自定义货币对形态

使用 MetaTrader 5 在 Python 中查找自定义货币对形态

外汇市场是否存在重复的形态和规律?我决定使用 Python 和 MetaTrader 5 创建自己的形态分析系统。一种数学和编程的共生关系,用于征服外汇。
preview
让新闻交易轻松上手(第五部分):执行交易(2)

让新闻交易轻松上手(第五部分):执行交易(2)

本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。
preview
神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

在本文中,我们继续实现 ATFNet 模型的方式,其在时间序列预测内可自适应地结合 2 个模块(频域和时域)的结果。
preview
黑洞算法(BHA)

黑洞算法(BHA)

黑洞算法(BHA)利用黑洞引力原理来优化解。在本文中,我们将考察 BHA 如何在避免局部极端情况的同时,吸引最佳解,以及为什么该算法已成为解决复杂问题的强大工具。学习简单的思路如何在优化世界带来令人印象深刻的结果。
preview
开发回放系统(第 44 部分):Chart Trader 项目(三)

开发回放系统(第 44 部分):Chart Trader 项目(三)

在上一篇文章中,我介绍了如何操作模板数据以便在 OBJ_CHART 中使用。在那篇文章中,我只是概述了这一主题,并没有深入探讨细节,因为在那个版本中,这项工作是以非常简单的方式完成的。这样做是为了更容易解释内容,因为尽管很多事情表面上很简单,但其中有些并不那么明显,如果不了解最简单、最基本的部分,就无法真正理解全局。
preview
为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 6 部分

为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 6 部分

本文是介绍我们针对 MQTT 5.0 协议的本地 MQL5 客户端的开发步骤的系列文章的第六部分。在本部分中,我们会讨论我们第一次重构中的主要变化,我们如何为我们的数据包构建类得出可行的蓝图,我们如何构建 PUBLISH 和 PUBACK 数据包,以及 PUBACK 原因代码背后的语义。
preview
价格行为分析工具包开发(第二部分):分析注释脚本

价格行为分析工具包开发(第二部分):分析注释脚本

秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
preview
基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型

基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型

在本次讨论中,我们将把一个简单的马尔可夫链应用于相对强弱指标(RSI),以观察指标穿过关键水平后的价格行为。我们得出结论,当RSI处于11-20区间时,会产生最强的买入信号;而当RSI处于71-80区间时,会产生最强的卖出信号,这在新西兰元兑日元(NZDJPY)货币对上表现得尤为明显。我们将展示如何通过对数据的处理和分析,直接从您所拥有的数据中构建出最优的交易策略。此外,我们还将展示如何训练一个深度神经网络,使其能够最优地利用转移矩阵。
preview
用Python和MQL5进行投资组合优化

用Python和MQL5进行投资组合优化

本文探讨了使用Python和MQL5结合MetaTrader 5进行高级投资组合优化的技术。文章展示了如何开发用于数据分析、资产配置和交易信号生成的算法,强调了在现代金融管理和风险缓解中数据驱动决策的重要性。
preview
从基础到中级:Include 指令

从基础到中级:Include 指令

在今天的文章中,我们将讨论一个在 MQL5 中可以找到的各种代码中广泛使用的编译指令。虽然这里对这个指令的解释相当肤浅,但重要的是你要开始了解如何使用它,因为随着你进入更高层次的编程,它很快就会变得不可或缺。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
交易中的神经网络:点云的层次化特征学习

交易中的神经网络:点云的层次化特征学习

我们继续研究从点云提取特征的算法。在本文中,我们将领略提升 PointNet 方法效率的机制。