MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 43 部分):Chart Trade 项目(II)

开发回放系统(第 43 部分):Chart Trade 项目(II)

大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
preview
随机数生成器质量对优化算法效率的影响

随机数生成器质量对优化算法效率的影响

在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
preview
股票交易中的非线性回归模型

股票交易中的非线性回归模型

股票交易中的非线性回归模型:能否预测金融市场?让我们考虑创建一个用于预测欧元兑美元(EURUSD)汇率的模型,并基于此模型制作两个交易机器人——分别使用Python和MQL5语言。
preview
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。
preview
交易中的神经网络:点云的层次化特征学习

交易中的神经网络:点云的层次化特征学习

我们继续研究从点云提取特征的算法。在本文中,我们将领略提升 PointNet 方法效率的机制。
preview
开发回放系统(第 52 部分):事情变得复杂(四)

开发回放系统(第 52 部分):事情变得复杂(四)

在本文中,我们将修改鼠标指针,以实现与控制指标的交互,确保可靠、稳定地运行。
preview
价格行为分析工具包开发(第二部分):分析注释脚本

价格行为分析工具包开发(第二部分):分析注释脚本

秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
preview
分歧问题:深入探讨人工智能的复杂性可解释性

分歧问题:深入探讨人工智能的复杂性可解释性

在这篇文章中,我们将探讨理解人工智能如何工作的挑战。人工智能模型经常会以难以解释的方式做出决策,这就是所谓的 "分歧问题"。这个问题是提高人工智能透明度和可信度的关键。
preview
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
preview
基于套接字(Sockets)的Twitter情绪分析

基于套接字(Sockets)的Twitter情绪分析

这种创新的交易机器人将 MetaTrader 5 与 Python 结合,利用实时社交媒体情绪分析为自动化交易决策提供支持。通过分析与特定金融工具相关的 Twitter 情绪,该机器人将社交媒体趋势转化为可操作的交易信号。它采用客户端-服务器架构,并通过套接字通信实现无缝交互,将 MT5 的交易能力与 Python 的数据处理能力完美结合。该系统展示了将量化金融与自然语言处理相结合的潜力,提供了一种利用替代数据源的尖端算法交易方法。尽管显示出巨大潜力,但该机器人也突显了未来改进的方向,包括采用更先进的情绪分析技术以及改进风险管理策略。
preview
神经网络实践:直线函数

神经网络实践:直线函数

在本文中,我们将快速了解一些方法,以获得可以在数据库中表示数据的函数。我不会详细介绍如何使用统计和概率研究来解释结果。让我们把它留给那些真正想深入研究数学方面的人。探索这些问题对于理解研究神经网络所涉及的内容至关重要。在这里,我们将非常冷静地探讨这个问题。
preview
基于人工生态系统的优化(AEO)算法

基于人工生态系统的优化(AEO)算法

本文探讨了一种元启发式算法——基于人工生态系统的优化(Artificial Ecosystem-based Optimization, AEO)算法。该算法通过生成初始解种群并应用自适应更新策略,模拟生态系统各组成部分之间的相互作用。文中详细阐述了AEO算法的运行阶段,包括消耗阶段与分解阶段,以及不同智能体的行为策略。文章还介绍了该算法的特点和优势。
preview
为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 5 部分

为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 5 部分

本文是系列文章的第五部分,介绍了我们为 MQTT 5.0 协议开发本地 MQL5 客户端的步骤。在这一部分中,我们将介绍 PUBLISH 数据包的结构、如何设置其发布标志(Publish Flag)、如何对主题名称(Topic Name)字符串进行编码,以及在需要时如何设置数据包标识符(Packet Identifier)。
preview
神经网络实践:割线

神经网络实践:割线

正如理论部分已经解释的那样,在使用神经网络时,我们需要使用线性回归和导数。为什么呢?原因是线性回归是现存最简单的公式之一。从本质上讲,线性回归只是一种仿射函数。然而,当我们谈论神经网络时,我们对直接线性回归的影响并不感兴趣。我们感兴趣的是生成这条直线的方程。我们对创建出的线并不感兴趣。你知道我们需要理解的主要方程吗?如果没有,我建议您阅读这篇文章来了解它。
preview
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
preview
跨邻域搜索(ANS)

跨邻域搜索(ANS)

本文揭示了跨邻域搜索(ANS)算法的潜力,作为重要的一步,旨在开发灵活且智能的优化方法,使其能够在搜索空间中考虑问题的具体特性和环境的动态变化。
preview
Connexus的头(第三部分):掌握HTTP请求头的使用方法

Connexus的头(第三部分):掌握HTTP请求头的使用方法

我们继续开发Connexus库。在本章中,我们探讨HTTP协议中请求头的概念,解释它们是什么、它们的用途以及如何在请求中使用它们。我们将涵盖用于与API通信的主要头信息,并展示了如何在库中配置它们的实例。
preview
您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

牛顿多项式,其依据一组少量点创建二次方程,是一种古老但有趣的时间序列观察方式。在本文中,我们尝试探讨这种方式在哪些方面对交易者有用,并解决其局限性。
preview
使用图表可视化交易(第一部分):选择分析时段

使用图表可视化交易(第一部分):选择分析时段

在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。
preview
使用MQL5中的动态时间规整进行模式识别

使用MQL5中的动态时间规整进行模式识别

在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。
preview
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
开发回放系统(第 57 部分):了解测试服务

开发回放系统(第 57 部分):了解测试服务

需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
preview
神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

本文深入探讨了生物体的社会行为及其对新型数学模型——自适应社会行为优化(ASBO)创建的影响,为我们呈现了一个引人入胜的世界。我们将研究生物社会中观察到的领导、近邻和合作原则如何激发创新优化算法的开发。
preview
人工喷淋算法(ASHA)

人工喷淋算法(ASHA)

本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。
preview
交易中的神经网络:点云变换器(Pointformer)

交易中的神经网络:点云变换器(Pointformer)

在本文中,我们将说道有关使用注意力方法解决点云中物体检测问题的算法。点云中的物体检测对于很多现世应用都很重要。
preview
HTTP和Connexus(第2部分):理解HTTP架构和库设计

HTTP和Connexus(第2部分):理解HTTP架构和库设计

本文探讨了HTTP协议的基础知识,涵盖了主要方法(GET、POST、PUT、DELETE)、状态码以及URL的结构。此外,还介绍了Conexus库的构建起点,以及CQueryParam和CURL类,这些类用于在HTTP请求中操作URL和查询参数。
preview
开发回放系统(第 61 部分):玩转服务(二)

开发回放系统(第 61 部分):玩转服务(二)

在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
preview
开发回放系统(第 68 部分):取得正确的时间(一)

开发回放系统(第 68 部分):取得正确的时间(一)

今天,我们将继续努力,让鼠标指针告诉我们在流动性较低期间,一根柱形上还剩下多少时间。尽管乍一看似乎很简单,但实际上这项任务要困难得多。这涉及一些我们必须克服的障碍。因此,为了理解以下部分,您必须很好地理解子系列第一部分的材料。
preview
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
preview
算术优化算法(AOA):从AOA到SOA(简单优化算法)

算术优化算法(AOA):从AOA到SOA(简单优化算法)

在本文中,我们介绍了基于简单算术运算(加法、减法、乘法和除法)的算术优化算法(AOA)。这些基本的数学运算是为各种问题寻找最优解的基础。
preview
开发回放系统(第 51 部分):事情变得复杂(三)

开发回放系统(第 51 部分):事情变得复杂(三)

在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
从Python到MQL5:量子启发式交易系统的探索之旅

从Python到MQL5:量子启发式交易系统的探索之旅

本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。
preview
精通日志记录(第一部分):MQL5中的基础概念与入门步骤

精通日志记录(第一部分):MQL5中的基础概念与入门步骤

欢迎开启另一段探索之旅!本文是一个特别系列的开篇之作,我们将逐步创建一个专为MQL5语言开发者量身定制的日志操作库。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。
preview
神经网络实践:第一个神经元

神经网络实践:第一个神经元

在本文中,我们将开始构建一些简单而不起眼的东西:神经元。我们将使用非常少量的 MQL5 代码对其进行编程。神经元在我的测试中表现良好。让我们回到这一系列关于神经网络的文章中,了解一下我在说什么。
preview
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。