MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
从基础到中级:模板和类型名称(二)

从基础到中级:模板和类型名称(二)

本文解释了如何处理您可能遇到的最困难的编程情况之一:在同一个函数或过程模板中使用不同的类型。尽管我们大部分时间只关注函数,但这里介绍的所有内容都是有用的,并且可以应用于过程。
preview
从基础到中级:模板和类型名称(三)

从基础到中级:模板和类型名称(三)

在本文中,我们将讨论该主题的第一部分,这对初学者来说并不容易理解。为了避免更加困惑并正确解释这个话题,我们将把解释分为几个阶段。我们将把这篇文章用于第一阶段。然而,尽管在本文末尾,我们似乎已经陷入僵局,但事实上,我们将朝着另一种情况迈出一步,这将在下一篇文章中得到更好的理解。
preview
集成学习模型中的门控机制

集成学习模型中的门控机制

在本文中,我们继续探讨集成模型,重点讨论“门控”的概念,尤其是门控如何通过整合模型输出来提升预测准确性或模型泛化能力。
preview
在训练中激活神经元的函数:快速收敛的关键?

在训练中激活神经元的函数:快速收敛的关键?

本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
preview
市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel

市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel

许多人,尤其是非程序员,发现在 MetaTrader 5 和其他程序之间传输信息非常困难。其中一个程序就是 Excel。许多人使用 Excel 作为管理和维护风险控制的一种方式。这是一个优秀的程序,易于学习,即使对于那些不是 VBA 程序员的人来说也是如此。在这里,我们将看看如何在 MetaTrader 5 和 Excel 之间建立连接(一种非常简单的方法)。
preview
人工部落算法(ATA)

人工部落算法(ATA)

文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
preview
辩证搜索(DA)

辩证搜索(DA)

本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
preview
从基础到中级:模板和类型名称(四)

从基础到中级:模板和类型名称(四)

在本文中,我们将非常仔细地研究如何解决上一篇文章末尾提出的问题。尝试创建这种类型的模板,以便能够创建数据联合的模板。
preview
优化中自定义准则的新方法(第一部分):激活函数示例

优化中自定义准则的新方法(第一部分):激活函数示例

本系列文章首篇将探讨自定义准则的数学原理,重点聚焦神经网络中使用的非线性函数、MQL5实现代码,以及目标导向与校正偏移量的应用。
preview
精通日志记录(第六部分):数据库日志存储方案

精通日志记录(第六部分):数据库日志存储方案

本文探讨如何利用数据库以结构化、可扩展的方式存储日志。内容涵盖基础概念、核心操作、MQL5中数据库处理器的配置与实现。最后验证结果,并阐述该方法在优化与高效监控方面的优势。
preview
MQL5中用于预测与分类评估的重采样技术

MQL5中用于预测与分类评估的重采样技术

本文将探讨并实现一种方法:利用单一数据集同时作为训练集和验证集,来评估模型质量。
preview
交易中的神经网络:具有层化记忆的智代

交易中的神经网络:具有层化记忆的智代

模仿人类认知过程的层化记忆方式令复杂金融数据的处理、以及适配新信号成为可能,因此在动态市场中提升投资决策的有效性。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
风险管理(第二部分):在图形界面中实现手数计算

风险管理(第二部分):在图形界面中实现手数计算

在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
preview
市场模拟(第七部分):套接字(一)

市场模拟(第七部分):套接字(一)

套接字,你知道它们在 MetaTrader 5 中的用途或使用方法吗?如果答案是否定的,那么让我们从研究它们开始。在今天的文章中,我们将介绍一些基础知识。由于有几种方法可以做同样的事情,而且我们总是对结果感兴趣,我想证明确实有一种简单的方法可以将数据从 MetaTrader 5 传输到其他程序,如 Excel。然而,主要目的不是将数据从 MetaTrader 5 传输到 Excel,而是相反,即将数据从 Excel 或任何其他程序传输到 MetaTrader 5。
preview
价格行为分析工具包开发(第二十部分):外部资金流(4)——相关性路径探索器

价格行为分析工具包开发(第二十部分):外部资金流(4)——相关性路径探索器

作为价格行为分析工具包开发系列的一部分,相关性路径探索器为理解货币对动态提供了一种全新方法。该工具可自动收集和分析数据,深入分析诸如欧元兑美元(EUR/USD)和英镑兑美元(GBP/USD)等货币对之间的相互作用。借助其实用、实时的信息,增强你的交易策略,助您更有效地管理风险并发现机会。
preview
将人工智能(AI)模型集成到已有的MQL5交易策略中

将人工智能(AI)模型集成到已有的MQL5交易策略中

本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

我们邀请您来探索 FinAgent,一个多模态金融交易智代框架,设计用来分析反映市场动态和历史交易形态的各种数据。