
基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型
在本次讨论中,我们将把一个简单的马尔可夫链应用于相对强弱指标(RSI),以观察指标穿过关键水平后的价格行为。我们得出结论,当RSI处于11-20区间时,会产生最强的买入信号;而当RSI处于71-80区间时,会产生最强的卖出信号,这在新西兰元兑日元(NZDJPY)货币对上表现得尤为明显。我们将展示如何通过对数据的处理和分析,直接从您所拥有的数据中构建出最优的交易策略。此外,我们还将展示如何训练一个深度神经网络,使其能够最优地利用转移矩阵。

种群优化算法:模拟退火(SA)。第 1 部分
模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。

构建蜡烛图趋势约束模型(第7部分):为EA开发优化我们的模型
在本文中,我们将详细探讨为开发专家顾问(EA)所准备的指标的相关内容。我们不仅会讨论如何对当前版本的指标进行进一步改进,以提升其准确性和功能,还会引入全新的功能来标记退出点,以弥补之前版本仅具备识别入场点功能的不足。

数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)
在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。

人工藻类算法(Artificial Algae Algorithm,AAA)
文章探讨了基于藻类微生物特征的人工藻类算法(AAA)。该算法包括螺旋运动、进化过程和适应性,使其能够解决优化问题。本文深入分析了AAA的工作原理及其在数学建模中的潜力,强调了自然与算法解决方案之间的联系。

使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能
在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。

价格行为分析工具箱开发(第三部分):分析大师 —EA
从一个简单的交易脚本升级到一个功能完备的智能交易系统(EA),可以极大地提升您的交易体验。想象一下,拥有一个能够自动监控您的图表、在后台执行关键计算,并每隔两小时提供定期更新的系统。这款EA将配备分析关键指标的功能,而这些指标对于做出明智的交易决策至关重要,从而确保您能获取最新信息,以有效地调整您的交易策略。

在 MQL5 中重新构想经典策略(第二部分):富时 100 指数(FTSE100)与英国国债(UK Gilts)
在本系列文章中,我们探索了流行的交易策略,并尝试使用人工智能(AI)对其进行改进。在今天的文章中,我们将重新审视基于股市与债市之间关系的经典交易策略。

通过推送通知监控交易——一个MetaTrader 5服务的示例
在本文中,我们将探讨如何创建一个服务应用程序,用于向智能手机发送关于交易结果的通知。我们将学习如何处理标准库对象列表,以便根据所需属性组织对象的选择。

构建一个用于实现带约束条件的自定义最大值的通用优化公式(GOF)
在这篇文章中,我们将介绍一种在MetaTrader 5终端的设置选项卡中选择“自定义最大值”时,实现具有多个目标和约束的优化问题的方法。举例来说,优化问题可以是:最大化利润因子、净利润和恢复因子,同时满足以下条件:回撤小于10%,连续亏损次数少于5次,每周交易次数多于5次。

开发多币种 EA 交易 (第 13 部分):自动化第二阶段 — 分组选择
我们已经实现了自动化优化的第一阶段。我们根据若干标准对不同的交易品种和时间框架进行优化,并将每次通过的结果信息存储在数据库中。现在我们将从第一阶段找到的参数集中选择最佳组。

神经网络实践:最小二乘法
在本文中,我们将探讨一些想法,包括数学公式在外观上怎么会比用代码实现时更复杂。此外,我们还将考虑如何设置图表的象限,以及 MQL5 代码中可能出现的一个有趣问题。不过,说实话,我还是不太明白该如何解释。总之,我会告诉你如何用代码解决这个问题。

重思经典策略(第八部分):基于美元兑加元(USDCAD)探讨外汇市场与贵金属
在本系列文章中,我们将重新审视一些广为人知的交易策略,看看是否能够利用人工智能(AI)来改进它们。请加入我们今天的讨论,一起测试贵金属与货币之间是否存在可靠的关系。

因果推断中的时间序列聚类
在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。

您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易
默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。

基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法
传统的机器学习教导从业者要警惕不要使模型陷入过度拟合。然而,这种观念正受到哈佛大学研究人员最新发表的学术见解的挑战。他们发现,看似过拟合的情形在某些情况下可能是由于提前终止训练过程导致的。我们将展示如何利用研究论文中发表的观点,来改进我们使用人工智能预测市场行为的方式。

开发回放系统(第 49 部分):事情变得复杂 (一)
在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。

数据处理的分组方法:在MQL5中实现组合算法
在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。

动物迁徙优化(AMO)算法
本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试
默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。
在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。

开发回放系统(第 38 部分):铺路(II)
许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。

开发回放系统(第 46 部分):Chart Trade 项目(五)
厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。

开发回放系统(第 58 部分):重返服务工作
在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。

让新闻交易轻松上手(第五部分):执行交易(2)
本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。

神经网络变得简单(第 72 部分):噪声环境下预测轨迹
预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。

头脑风暴优化算法(第一部分):聚类
在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。

从基础到中级:操作符
在本文中,我们将介绍主要的操作符。虽然这个主题很容易理解,但在代码格式中包含数学表达式时,有一些要点非常重要。如果不充分了解这些细节,经验很少或没有经验的程序员最终会放弃尝试创建自己的解决方案。

基于Python和MQL5的特征工程(第二部分):价格角度
在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。