关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
矩阵分解基础知识

矩阵分解基础知识

由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
您应当知道的 MQL5 向导技术(第 11 部分):数字墙

您应当知道的 MQL5 向导技术(第 11 部分):数字墙

数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。
preview
种群优化算法:鸟群算法(BSA)

种群优化算法:鸟群算法(BSA)

本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
preview
神经网络实践:割线

神经网络实践:割线

正如理论部分已经解释的那样,在使用神经网络时,我们需要使用线性回归和导数。为什么呢?原因是线性回归是现存最简单的公式之一。从本质上讲,线性回归只是一种仿射函数。然而,当我们谈论神经网络时,我们对直接线性回归的影响并不感兴趣。我们感兴趣的是生成这条直线的方程。我们对创建出的线并不感兴趣。你知道我们需要理解的主要方程吗?如果没有,我建议您阅读这篇文章来了解它。
preview
神经网络变得简单(第 74 部分):自适应轨迹预测

神经网络变得简单(第 74 部分):自适应轨迹预测

本文介绍了一种相当有效的多个体轨迹预测方法,其可适配各种环境条件。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。
preview
分歧问题:深入探讨人工智能的复杂性可解释性

分歧问题:深入探讨人工智能的复杂性可解释性

在这篇文章中,我们将探讨理解人工智能如何工作的挑战。人工智能模型经常会以难以解释的方式做出决策,这就是所谓的 "分歧问题"。这个问题是提高人工智能透明度和可信度的关键。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
群体算法的混合 -顺序结构和并行结构

群体算法的混合 -顺序结构和并行结构

在这里,我们将深入探讨优化算法混合的三个主要类型:策略混合、顺序混合和并行混合。我们将结合并测试相关的优化算法进行一系列实验。
preview
使用Python和MQL5开发机器人(第一部分):数据预处理

使用Python和MQL5开发机器人(第一部分):数据预处理

基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。
preview
使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
数据分组处理方法:在MQL5中实现多层迭代算法。

数据分组处理方法:在MQL5中实现多层迭代算法。

在本文中,我们介绍如何在MQL5中实现分组数据处理方法中的多层迭代算法。
preview
因果推理中的倾向性评分

因果推理中的倾向性评分

本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
随机数生成器质量对优化算法效率的影响

随机数生成器质量对优化算法效率的影响

在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
preview
种群优化算法:二进制遗传算法(BGA)。第 I 部分

种群优化算法:二进制遗传算法(BGA)。第 I 部分

在本文中,我们将探讨二进制遗传和其它种群算法中所用的各种方法。我们将见识到算法的主要组成部分,例如选择、交叠和突变,以及它们对优化的影响。此外,我们还将研究数据表示方法,及其对优化结果的影响。
preview
群体算法的基类作为高效优化的支柱

群体算法的基类作为高效优化的支柱

该文章代表了一种独特的研究尝试,旨在将多种群体算法组合成一个类,以简化优化方法的应用。这种方法不仅为开发新算法(包括混合变体)开辟了机会,而且还创建了一个通用的基本测试平台。它成为根据特定任务选择最佳算法的关键工具。
preview
MQL5 简介(第 5 部分):MQL5 数组函数入门指南

MQL5 简介(第 5 部分):MQL5 数组函数入门指南

在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!
preview
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
MQL5 简介(第 4 部分):掌握结构、类和时间函数

MQL5 简介(第 4 部分):掌握结构、类和时间函数

在我们的最新文章中揭开 MQL5 编程的秘密!深入了解结构、类和时间函数的基本要素,为您的编码之旅赋能。无论您是初学者还是经验丰富的开发人员,我们的指南都简化了复杂的概念,为掌握 MQL5 提供了宝贵的见解。提升你的编程技能,在算法交易领域保持领先!
preview
数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。
preview
种群优化算法:微人工免疫系统(Micro-AIS)

种群优化算法:微人工免疫系统(Micro-AIS)

本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。
preview
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。
preview
神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)

神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)

在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。
preview
神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)

神经网络变得简单(第 70 部分):封闭式政策改进运算器(CFPI)

在本文中,我们将领略一种算法,其使用封闭式政策改进运算器来优化离线模式下的智能体动作。
preview
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
preview
时间序列分类问题中的因果推理

时间序列分类问题中的因果推理

在本文中,我们将研究使用机器学习的因果推理理论,以及 Python 中的自定义方法实现。因果推理和因果思维植根于哲学和心理学,在我们理解现实中起着重要作用。
preview
MQL5 简介(第 3 部分):掌握 MQL5 的核心元素

MQL5 简介(第 3 部分):掌握 MQL5 的核心元素

在这篇便于初学者阅读的文章中,我们将为您揭开数组、自定义函数、预处理器和事件处理的神秘面纱,并对所有内容进行清晰讲解,让您可以轻松理解每一行代码,从而探索 MQL5 编程的基础知识。加入我们,用一种独特的方法释放 MQL5 的力量,确保每一步都能理解。本文为掌握 MQL5 奠定了基础,强调了对每行代码的解释,并提供了独特而丰富的学习体验。
preview
神经网络变得简单(第 68 部分):离线优先引导政策优化

神经网络变得简单(第 68 部分):离线优先引导政策优化

自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。
preview
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
preview
使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。
preview
频域中的滤波和特征提取

频域中的滤波和特征提取

在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
preview
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

本文研究一套称为进化策略(ES)的优化算法。它们是最早使用进化原理来寻找最优解的种群算法之一。我们将针对传统的 ES 变体实现变更,并修改算法的测试函数和测试台方法。
preview
数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学

数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学

探索算法炼金术的秘密,我们将引导您融会贯通如何在解码金融领域时将艺术性和精确性相结合。揭示随机森林如何将数据转化为预测能力,为驾驭股票市场的复杂场景提供独特的视角。加入我们的旅程,进入金融魔法的心脏地带,此处我们会揭开随机森林在塑造市场命运、及解锁赚钱机会之门方面之角色的神秘面纱