
人工蜂巢算法(ABHA):测试与结果
在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗
基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

交易中的神经网络:用于时间序列预测的轻量级模型
轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。

您应当知道的 MQL5 向导技术(第 23 部分):CNNs
卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。

人工蜂巢算法(ABHA):理论及方法
在本文中,我们将探讨2009年开发的人工蜂巢算法(ABHA)。该算法旨在解决连续优化问题。我们将研究ABHA如何从蜂群的行为中汲取灵感,其中每只蜜蜂都有独特的角色,帮助它们更有效地寻找资源。

神经网络变得简单(第 94 部分):优化输入序列
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。

您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)
生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。

将您自己的 LLM 集成到 EA 中(第 3 部分):使用 CPU 训练自己的 LLM
在人工智能飞速发展的今天,大语言模型(LLM)是人工智能的重要组成部分,所以我们应该思考如何将强大的 LLM 融入到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

神经网络变得简单(第 92 部分):频域和时域中的自适应预测
FreDF 方法的作者通过实验证实了结合频域和时域进行预测的优势。不过,权重超参数的使用对于非稳态时间序列并非最优。在本文中,我们将领略结合频域和时域预测的自适应方法。

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试
默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。

适应性社会行为优化(ASBO):两阶段演变
我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。

您应当知道的 MQL5 向导技术(第 20 部分):符号回归
符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。

神经网络实践:伪逆 (二)
由于这些文章本质上是教育性的,并不打算展示特定功能的实现,因此我们在本文中将做一些不同的事情。我们将重点介绍伪逆的因式分解,而不是展示如何应用因式分解来获得矩阵的逆。原因是,如果我们能以一种特殊的方式来获得一般系数,那么展示如何获得一般系数就没有意义了。更好的是,读者可以更深入地理解为什么事情会以这种方式发生。那么,现在让我们来弄清楚为什么随着时间的推移,硬件正在取代软件。

神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)
通过研究 FEDformer 方法,我们打开了时间序列频域表述的大门。在这篇新文章中,我们将继续一开始的主题。我们将研究一种方法,据其我们不仅能进行分析,还可以预测特定区域的后续状态。

重塑经典策略(第三部分):预测新高与新低
在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。

神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)
到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。

自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法
本文深入探讨了生物体的社会行为及其对新型数学模型——自适应社会行为优化(ASBO)创建的影响,为我们呈现了一个引人入胜的世界。我们将研究生物社会中观察到的领导、近邻和合作原则如何激发创新优化算法的开发。

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索
神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。

神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)
为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。

化学反应优化 (CRO) 算法(第二部分):汇编和结果
在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。

人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。

化学反应优化(CRO)算法(第一部分):在优化中处理化学
在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。

使用PatchTST机器学习算法预测未来24小时的价格走势
在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析
本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。

《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》
循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。

用Python重塑经典策略:移动平均线交叉
在本文中,我们重新审视了经典的移动平均线交叉策略,以评估其当前的有效性。鉴于该策略自诞生以来已经过去了很长时间,我们探索了人工智能可能为其带来的潜在增强效果。通过融入人工智能技术,我们旨在利用高级的预测能力来潜在地优化交易的入场和出场点,适应不断变化的市场条件,并与传统方法相比提高整体表现。

神经网络实践:直线函数
在本文中,我们将快速了解一些方法,以获得可以在数据库中表示数据的函数。我不会详细介绍如何使用统计和概率研究来解释结果。让我们把它留给那些真正想深入研究数学方面的人。探索这些问题对于理解研究神经网络所涉及的内容至关重要。在这里,我们将非常冷静地探讨这个问题。

数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。

神经网络实践:伪逆(I)
今天,我们将开始探讨如何在纯MQL5语言中实现伪逆的计算。即将展示的代码对于初学者来说可能比我预期的要复杂得多,我还在思考如何以简单的方式解释它。所以,现在请将其视为学习一些不寻常代码的机会。请保持冷静和专注。虽然它并不旨在高效或快速应用,但其目标是尽可能具有教育意义。