
用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试
本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需求有针对性地进行数据标注,可以使训练出来的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

数据科学和机器学习(第 16 部分):全新面貌的决策树
在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句
通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!

种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分
第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本
本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。

种群优化算法:模拟退火(SA)。第 1 部分
模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。

神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。

MQL5 简介(第 1 部分):算法交易新手指南
通过我们的 MQL5 编程新手指南,进入算法交易的迷人领域。在揭开自动化交易世界的神秘面纱之际,让我们探索支持MetaTrader 5 的语言 MQL5 的精髓。从了解基础知识到迈出编码的第一步,本文是您即使没有编程背景也能释放算法交易潜力的关键。加入我们的旅程,在令人兴奋的 MQL5 世界里,体验简单与复杂的结合吧。

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型
在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。

利用 Python 和 MQL5 构建您的第一个玻璃盒模型
如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。

精通模型解释:从您的机器学习模型中获取深入见解
机器学习对于任何经验的人来说都是一个复杂而回报的领域。在本文中,我们将深入探讨为您所构建模型提供动力的内在机制,我们探索的错综复杂的世界,涵盖特征、预测和化解复杂性的有力决策,并牢牢把握模型解释。学习驾驭权衡、强化预测、特征重要性排位的艺术,同时确保做出稳健的决策。这篇基本读物可帮助您从机器学习模型中获得更高的性能,并为运用机器学习方法提取更多价值。

群体优化算法:螺旋动态优化 (SDO) 算法
文章介绍了一种基于自然界螺旋轨迹构造模式(如软体动物贝壳)的优化算法 - 螺旋动力学优化算法(Spiral Dynamics Optimization,SDO)。我对作者提出的算法进行了彻底的修改和完善,本文将探讨这些修改的必要性。

您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对
“K-均值”聚类采用数据点分组的方式,该过程最初侧重于数据集的宏观视图,使用随机生成的聚类质心,然后放大并调整这些质心,从而准确表示数据集。我们将对此进行研究,并开拓一些它的用例。

群体优化算法:智能水滴(IWD)算法
文章探讨了一种源自无生命自然的有趣算法 - 模拟河床形成过程的智能水滴(IWD,Intelligent Water Drops)。这种算法的理念大大改进了之前的评级领先者 - SDS。与往常一样,新的领先者(修改后的 SDSm)可在附件中找到。

您应当知道的 MQL5 向导技术(第 08 部分):感知器
感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。

种群优化算法:Nelder-Mead(NM),或单纯形搜索方法
本文表述针对 Nelder-Mead 方法进行的彻底探索,解释了如何在每次迭代中修改和重新排列单纯形(函数参数空间),从而达成最优解,并讲述了如何改进该方法。

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI
在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。

神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)
我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。

群体优化算法:带电系统搜索(CSS)算法
在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器
在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。

Scikit-Learn 库中的分类模型及其导出到 ONNX
在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。

神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题
在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。

群体优化算法:随机扩散搜索(SDS)
本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。

群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。

神经网络变得简单(第 59 部分):控制二分法(DoC)
在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。

群体优化算法:混合蛙跳算法(SFL)
本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。

将您自己的LLM集成到EA中(第2部分):环境部署示例
随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

神经网络变得简单(第 56 部分):利用核范数推动研究
强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。

MQL5中的范畴论(第23部分):对双重指数移动平均的不同看法
在这篇文章中,我们继续我们的主题,最后是从“新”的角度处理日常交易指标。我们正在为这篇文章处理自然变换的水平组合,而这方面的最佳指标是双重指数移动平均(DEMA),它扩展了我们刚刚涵盖的内容。