Artigos sobre como automatizar sistemas de negociação na linguagem MQL5

icon

Leia artigos sobre sistemas de negociação baseados em uma ampla diversidade de conceitos. Aprenda a usar métodos estatísticos e padrões sobre velas japonesas, a filtrar sinais e dominar indicadores 'semáforo'.

Graças ao Assistente MQL5, e sem ter que programar, você pode criar robôs para testar rapidamente suas ideias de negociação, além de aprender sobre algoritmos genéticos, entre outras coisas.

Novo artigo
recentes | melhores
preview
Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Continuaremos automatizando etapas que anteriormente realizávamos manualmente. Desta vez, voltaremos à automação da segunda etapa, ou seja, a escolha do grupo ideal de instâncias individuais de estratégias de negociação, complementada pela capacidade de considerar os resultados dessas instâncias no período forward.
preview
Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Neste artigo, é proposto um novo método para criar sistemas de trading baseados em aprendizado de máquina, utilizando clusterização e anotação de trades para estratégias de retorno à média.
preview
Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.
preview
Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Continuamos a explorar os métodos de aprendizado por reforço. Neste artigo, proponho apresentar um algoritmo ligeiramente diferente que considera a política do agente sob a perspectiva de construir uma sequência de ações.
preview
Experiência no desenvolvimento de estratégias de negociação

Experiência no desenvolvimento de estratégias de negociação

Neste artigo, proponho tentarmos desenvolver nossa própria estratégia de negociação. Uma estratégia de negociação deve ser construída com base em uma determinada vantagem estatística. E tal vantagem deve ser duradoura.
preview
Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Criação de uma estratégia de retorno à média com base em aprendizado de máquina

Neste artigo, é proposto um novo método para criar sistemas de trading baseados em aprendizado de máquina, utilizando clusterização e anotação de trades para estratégias de retorno à média.
preview
Agrupamento de séries temporais na inferência causal

Agrupamento de séries temporais na inferência causal

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.
preview
Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Neste artigo, adicionaremos herança ao código anterior e ao novo. Implementaremos uma nova estrutura de banco de dados para garantir um bom desempenho. Além disso, criaremos uma classe de gerenciamento de risco para calcular volumes.
preview
Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Apresento o framework adaptativo multiagente MASA, que une aprendizado por reforço e estratégias adaptativas, oferecendo um equilíbrio harmonioso entre rentabilidade e controle de riscos em condições de mercado turbulentas.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Apresentamos o sistema de negociação híbrido StockFormer, que combina codificação preditiva e algoritmos de aprendizado por reforço (RL). O framework utiliza 3 ramos Transformer com mecanismo integrado Diversified Multi-Head Attention (DMH-Attn), que melhora o módulo de atenção padrão com um bloco Feed-Forward multicabeça, permitindo capturar padrões de séries temporais em diferentes subespaços.
preview
Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Neste artigo, discutiremos como podemos construir Consultores Especialistas capazes de selecionar e mudar autonomamente as estratégias de negociação com base nas condições prevalentes do mercado. Vamos aprender sobre Cadeias de Markov e como elas podem ser úteis para nós, como traders algorítmicos.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
preview
Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Vamos nos afastar um pouco de nossos tópicos mais comuns e analisar uma parte do algoritmo do ChatGPT. Ele possui algumas semelhanças ou conceitos emprestados das transformações naturais? Vamos tentar responder a essas e outras perguntas usando nosso código no formato de classe de sinal.
preview
Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Neste artigo, continuaremos a falar sobre métodos de coleta de dados em uma amostra de treinamento. É claro que o processo de aprendizado requer constante interação com o ambiente. Mas as situações podem variar.
preview
Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Este artigo dá continuidade à série sobre a teoria das categorias, abordando as transformações naturais, que são um elemento fundamental da teoria. Vamos examinar a definição que parece complexa à primeira vista, depois mergulhar em exemplos e formas de aplicar as transformações na previsão de volatilidade.
preview
Inferência causal em problemas de classificação de séries temporais

Inferência causal em problemas de classificação de séries temporais

Neste artigo, examinaremos a teoria da inferência causal usando aprendizado de máquina, bem como a implementação de uma abordagem personalizada em Python. A inferência causal e o pensamento causal têm suas raízes na filosofia e psicologia e desempenham um papel importante na nossa compreensão da realidade.
preview
Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Neste artigo, apresentamos o Algoritmo de Otimização Aritmética (Arithmetic Optimization Algorithm, AOA), que se baseia em operações aritméticas simples: adição, subtração, multiplicação e divisão. Essas operações matemáticas básicas são fundamentais para a busca de soluções ótimas em diversas tarefas.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Até agora, analisamos a automação da execução de procedimentos sequenciais de otimização de EAs exclusivamente no testador de estratégias padrão. Mas o que fazer se, entre essas execuções, quisermos processar alguns dados já obtidos por outros meios? Vamos tentar adicionar a possibilidade de criar novas etapas de otimização, executadas por programas escritos em Python.
preview
Desenvolvendo um EA multimoeda (Parte 22): Início da transição para substituição dinâmica de configurações

Desenvolvendo um EA multimoeda (Parte 22): Início da transição para substituição dinâmica de configurações

Se decidimos automatizar a execução da otimização periódica, também precisamos cuidar da atualização automática das configurações dos EAs que já estão operando na conta de negociação. Isso também deve permitir rodar o EA no testador de estratégias e alterar suas configurações dentro de uma única execução.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Damos continuidade à análise do StockFormer, um sistema híbrido de negociação que combina codificação preditiva e algoritmos de aprendizado por reforço para análise de séries temporais financeiras. O sistema se baseia em três ramificações Transformer com o mecanismo Diversified Multi-Head Attention (DMH-Attn), que permite identificar padrões complexos e interrelações entre ativos. Anteriormente, aprendemos os aspectos teóricos do framework e implementamos os mecanismos do DMH-Attn; hoje vamos abordar a arquitetura dos modelos e seu treinamento.
preview
Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

Desenvolvendo um EA multimoeda (Parte 10): Criação de objetos a partir de uma string

O plano de desenvolvimento do EA prevê várias etapas com o salvamento de resultados intermediários em um banco de dados. Recuperá-los de lá é possível apenas na forma de strings ou números, não como objetos. Portanto, precisamos de uma maneira de recriar no EA os objetos necessários a partir de strings lidas do banco de dados.
preview
Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

Desenvolvendo um EA multimoeda (Parte 14): Alteração adaptativa dos volumes no gerenciador de risco

O gerenciador de risco anteriormente desenvolvido continha apenas funcionalidades básicas. Vamos explorar caminhos para aprimorá-lo, buscando melhorar os resultados de negociação sem alterar a lógica das estratégias de trading.
preview
Teoria das Categorias em MQL5 (Parte 19): Indução do quadrado de naturalidade

Teoria das Categorias em MQL5 (Parte 19): Indução do quadrado de naturalidade

Continuamos a análise das transformações naturais, examinando a indução do quadrado de naturalidade. Por causa das limitações na implementação de várias moedas para os Expert Advisors desenvolvidos com o assistente MQL5, temos de buscar soluções criativas e eficientes para a classificação de dados usando scripts. As principais áreas de aplicação consideradas são a classificação de variações de preço e, consequentemente, sua previsão.
preview
Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Desenvolvendo um EA multimoeda (Parte 11): Início da automação do processo de otimização

Para obter um bom EA, precisamos selecionar muitos bons conjuntos de parâmetros para as instâncias das estratégias de trading. Isso pode ser feito manualmente, executando a otimização em diferentes símbolos e, em seguida, escolhendo os melhores resultados. Mas é melhor delegar esse trabalho para um programa e se concentrar em atividades mais produtivas.
preview
Redes neurais em trading: Superpoint Transformer (SPFormer)

Redes neurais em trading: Superpoint Transformer (SPFormer)

Neste artigo, apresentamos um método de segmentação de objetos 3D baseado no Superpoint Transformer (SPFormer), que elimina a necessidade de agregação intermediária de dados. Isso acelera o processo de segmentação e melhora o desempenho do modelo.
preview
O escore de propensão na inferência causalidade

O escore de propensão na inferência causalidade

O artigo examina o tema de pareamento na inferência causal. O pareamento é utilizado para comparar observações semelhantes em um conjunto de dados. Isso é necessário para determinar corretamente os efeitos causais e eliminar o viés. O autor explica como isso ajuda na construção de sistemas de negociação baseados em aprendizado de máquina, que se tornam mais estáveis em novos dados nos quais não foram treinados. O escore de propensão desempenha um papel central e é amplamente utilizado na inferência causal.
preview
Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)

Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)

Neste artigo, apresento o algoritmo GTGAN, que foi introduzido em janeiro de 2024 para resolver tarefas complexas de criação de layout arquitetônico com restrições de grafos.
preview
Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)

Apresentamos a estrutura adaptativa multiagente para otimização de portfólio financeiro (MASAAT), que integra mecanismos de atenção e análise de séries temporais. O MASAAT forma um conjunto de agentes que analisam séries de preços e mudanças direcionais, permitindo identificar variações significativas nos preços dos ativos em diferentes níveis de detalhamento.
preview
Redes neurais de maneira fácil (Parte 53): decomposição de recompensa

Redes neurais de maneira fácil (Parte 53): decomposição de recompensa

Já falamos várias vezes sobre a importância de escolher corretamente a função de recompensa que usamos para incentivar o comportamento desejável do Agente, adicionando recompensas ou penalidades por ações específicas. Mas a questão de como o Agente interpreta nossos sinais permanece em aberto. Neste artigo, discutiremos a decomposição da recompensa em termos de transmissão de sinais individuais ao Agente a ser treinado.
preview
Criando um EA em MQL5 com base na estratégia de Rompimento do Intervalo Diário (Daily Range Breakout)

Criando um EA em MQL5 com base na estratégia de Rompimento do Intervalo Diário (Daily Range Breakout)

Neste artigo, criamos um EA em MQL5 com base na estratégia de Rompimento do Intervalo Diário (Daily Range Breakout). Vamos abordar os conceitos-chave da estratégia, desenvolver o esquema do EA e implementar a lógica de rompimento em MQL5. Por fim, estudamos os métodos de backtest e otimização do EA para maximizar sua eficiência.
preview
Compreendendo os Paradigmas de Programação (Parte 2): Uma Abordagem Orientada a Objetos para Desenvolver um Expert Advisor de Ação de Preço

Compreendendo os Paradigmas de Programação (Parte 2): Uma Abordagem Orientada a Objetos para Desenvolver um Expert Advisor de Ação de Preço

Aprenda sobre o paradigma de programação orientada a objetos e sua aplicação no código MQL5. Este segundo artigo aprofunda-se nas especificidades da programação orientada a objetos, oferecendo experiência prática através de um exemplo prático. Você aprenderá como converter nosso expert advisor de ação de preço procedural desenvolvido anteriormente usando o indicador EMA e dados de preços de velas para um código orientado a objetos.
preview
Redes neurais em trading: Transformer vetorial hierárquico (HiVT)

Redes neurais em trading: Transformer vetorial hierárquico (HiVT)

Apresentamos o método Transformer Vetorial Hierárquico (HiVT), desenvolvido para a previsão rápida e precisa de séries temporais multimodais.
preview
Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)

Redes neurais de maneira fácil (Parte 82): modelos de equações diferenciais ordinárias (NeuralODE)

Neste artigo, gostaria de apresentar outro tipo de modelos voltados para o estudo da dinâmica do estado do ambiente.
preview
Análise Múltipla de Símbolos com Python e MQL5 (Parte I): Fabricantes de Circuitos Integrados do NASDAQ

Análise Múltipla de Símbolos com Python e MQL5 (Parte I): Fabricantes de Circuitos Integrados do NASDAQ

Junte-se a nós para discutir como você pode usar IA para otimizar o dimensionamento de posições e a quantidade de ordens, a fim de maximizar o retorno do seu portfólio. Vamos mostrar como identificar, de forma algorítmica, um portfólio ideal e adaptar seu portfólio conforme sua expectativa de retorno ou níveis de tolerância ao risco. Nesta discussão, vamos utilizar a biblioteca SciPy e a linguagem MQL5 para criar um portfólio ideal e diversificado usando todos os dados que temos.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão

Ciência de Dados e Aprendizado de Máquina (Parte 16): Uma nova perspectiva sobre árvores de decisão

Na última parte da nossa série sobre aprendizado de máquina e trabalho com big data, voltamos a falar sobre as árvores de decisão. Este artigo é destinado a traders que desejam entender o papel das árvores de decisão na análise de tendências de mercado. Aqui, reunimos todas as informações principais sobre a estrutura, o propósito e o uso dessas árvores. Vamos explorar as raízes e os ramos das árvores algorítmicas e descobrir como elas podem ser aplicadas na tomada de decisões de negociação. Vamos juntos dar um novo olhar às árvores de decisão e ver como elas podem ajudar a superar as dificuldades nos mercados financeiros.
preview
Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Construindo um Modelo de Restrição de Tendências de Candlestick (Parte 3): Detectando mudanças nas tendências ao usar este sistema

Este artigo explora como a divulgação de notícias econômicas, o comportamento dos investidores e vários fatores podem influenciar as reversões de tendências de mercado. Inclui uma explicação em vídeo e prossegue incorporando código MQL5 ao nosso programa para detectar reversões de tendência, nos alertar e tomar as ações apropriadas com base nas condições de mercado. Isso se baseia em artigos anteriores da série.
preview
Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço

Redes neurais de maneira fácil (Parte 73): AutoBots para previsão de movimentos de preço

Continuamos a análise dos algoritmos de aprendizado de modelos de previsão de trajetórias. E neste artigo, proponho que você conheça o método chamado “AutoBots”.
preview
Negociando com o Calendário Econômico do MQL5 (Parte 3): Adicionando Filtros de Moeda, Importância e Tempo

Negociando com o Calendário Econômico do MQL5 (Parte 3): Adicionando Filtros de Moeda, Importância e Tempo

Neste artigo, implementamos filtros no painel do Calendário Econômico do MQL5 para refinar a exibição dos eventos de notícias por moeda, importância e tempo. Primeiro, estabelecemos critérios de filtro para cada categoria e depois os integramos ao painel para exibir apenas os eventos relevantes. Por fim, garantimos que cada filtro seja atualizado dinamicamente para fornecer aos traders insights econômicos focados e em tempo real.
preview
Desenvolvendo um EA multimoeda (Parte 6): Automatizando a seleção de um grupo de instâncias

Desenvolvendo um EA multimoeda (Parte 6): Automatizando a seleção de um grupo de instâncias

Depois de otimizar uma estratégia de negociação, obtemos conjuntos de parâmetros que facilitam a criação de várias instâncias dessa estratégia, todas integradas em um único Expert Advisor. Antes, fazíamos isso manualmente, mas agora vamos tentar automatizar esse processo.