Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 05): cadeias de Markov
As cadeias de Markov são uma poderosa ferramenta matemática que pode ser usada para modelar e prever dados de séries temporais em vários campos, incluindo finanças. Na modelagem e previsão de séries temporais financeiras, as cadeias de Markov são frequentemente usadas para modelar a evolução de ativos financeiros ao longo do tempo, ativo esses como preços de ações ou pares de moedas. Uma das principais vantagens dos modelos das cadeias de Markov é sua simplicidade e facilidade de uso.
Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas
Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de ofertas.
Desenvolvimento de um sistema de negociação baseado no indicador Ichimoku
Neste artigo continuamos a série em que aprendemos a construir sistemas de negociação com base nos indicadores mais populares. Desta vez vamos falar sobre o indicador Ichimoku e criar um sistema de negociação baseado nos seus valores.
Tudo o que você precisa saber sobre a estrutura de um programa MQL5
Qualquer programa em qualquer linguagem de programação possui uma estrutura específica. Neste artigo, você aprenderá os componentes básicos da estrutura de um programa na linguagem MQL5, o que pode ser extremamente útil ao criar um sistema de negociação ou uma ferramenta de negociação para o MetaTrader 5.
Redes neurais de retropropagação em matrizes MQL5
Este artigo trata da teoria e prática do uso do algoritmo de retropropagação de erros no MQL5 através de matrizes. Oferecemos classes prontas e exemplos de scripts, indicadores e EAs.
Esperança moral na negociação
Este artigo trata da esperança moral. Veremos vários exemplos de como ela é aplicada na negociação e quais resultados podem ser obtidos com ela.
Ciência de Dados e Aprendizado de Máquina (Parte 13): Analisando o mercado financeiro usando a análise de componentes principais (PCA)
Vamos tentar melhorar qualitativamente nossa análise dos mercados financeiros usando a análise de componentes principais (PCA). Aprenderemos como essa técnica pode ajudar a identificar padrões ocultos nos dados, identificar tendências de mercado ocultas e otimizar estratégias de investimento. Neste artigo, veremos como o PCA oferece uma nova perspectiva para a análise de dados financeiros complexos, ajudando-nos a ver informações que não percebemos usando abordagens tradicionais. Veremos se sua aplicação aos dados do mercado financeiro proporciona uma vantagem sobre a concorrência e nos ajuda a ficar um passo à frente.
Aprendendo a construindo um Expert Advisor que opera de forma automática (Parte 11): Automação (III)
Um sistema automático sem segurança não irá dar certo. Mas segurança não nasce sem que entendamos adequadamente algumas coisas. Neste artigo vamos entender é tão difícil alcançar a segurança máxima em sistemas automáticos.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 11): Nascimento do SIMULADOR (I)
Para poder usar dados que formam barras, precisamos abandonar o replay e começar a desenvolver um simulador. Não sabemos como ela foi criada. Estaremos utilizando as barras de 1 minuto, justamente pelo motivo, de elas nos darem, um nível de complexidade mínimo.
Como desenvolver um sistema de negociação baseado no indicador Acumulação/Distribuição (AD)
Bem-vindo ao novo artigo da nossa série sobre como aprender a projetar sistemas de negociação com base nos indicadores técnicos mais populares. Neste artigo, nós aprenderemos sobre um novo indicador técnico chamado Acumulação/Distribuição e descobriremos como desenvolver um sistema de negociação em MQL5 baseado nas estratégias simples com o AD.
Desenvolvimento de um indicador Heiken Ashi personalizado usando MQL5
Neste artigo, aprenderemos a criar nosso próprio indicador usando MQL5 com base em nossas preferências, que será usado no MetaTrader 5 para interpretar gráficos ou como parte de Expert Advisors.
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 5): Enviando Comandos do Telegram para o MQL5 e Recebendo Respostas em Tempo Real
Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 18): Tiquete e mais tiquetes (II)
Neste, fica extremamente claro, que as métricas, estão muito longe, do tempo ideal de confecção das barras de 1 minuto. Assim então, a primeira coisa que de fato iremos corrigir, será justamente isto. Corrigir a questão da temporização, não é algo complicado. Por mais incrível que possa parecer, é na verdade até bem simples de ser feito. Porém não fiz a correção no artigo anterior, por que lá o desejo era explicar, como fazer para jogar os dados de tickets, que estavam sendo usados para gerar as barras de 1 minuto no gráfico, para dentro da janela de observação de mercado.
Experiências com redes neurais (Parte 2): Otimização inteligente de redes neurais
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
Previsão usando modelos ARIMA em MQL5
Neste artigo, continuamos a desenvolver a classe CArima para construir modelos ARIMA adicionando métodos de previsão intuitivos.
Outras classes na biblioteca DoEasy (Parte 66): classe-coleção de Sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de sinais - do serviço Sinais MQL5.com - com funções para gerenciar sinais assinados e também modificaremos a classe do objeto-instantâneo do livro de ofertas para exibir o volume total de ordens sell e buy.
Aprendendo a construindo um EA que opera de forma automática (Parte 07): Tipos de Contas (II)
Aprenda como criar um EA que opera de forma automática, isto de forma simples e o mais seguro possível. É preciso sempre ficar atento, ao que um EA automatizado, esta fazendo, e se ele sair da linha, removê-lo o mais rápido possível do gráfico, encerrando o que ele estava fazendo, a fim de evitar que as coisas fugam do controle.
Relembrando a antiga estratégia de tendência: dois osciladores estocásticos, MA e Fibonacci
Estratégias de negociação tradicionais. Neste artigo, vamos explorar uma estratégia de acompanhamento de tendências. Essa abordagem é totalmente baseada em análise técnica e faz uso de vários indicadores e ferramentas para gerar sinais e identificar metas de negociação. Os elementos-chave dessa estratégia incluem um oscilador estocástico de 14 períodos, um oscilador estocástico de cinco períodos, uma média móvel de 200 períodos e uma projeção de Fibonacci (para determinar as metas de negociação).
O Quanto é Confiável Negociar à Noite?
O artigo aborda as peculiaridades da negociação em lateralidade de preço à noite nos pares de moedas cruzadas, explica onde você pode ter expectativa de lucros e porque grandes perdas não são improváveis. O artigo também apresenta um exemplo do Expert Advisor desenvolvido para negociação à noite e fala sobre a aplicação prática desta estratégia.
Pairs Trade
Neste artigo, examinaremos o pairs trade, ou negociação de pares, principalmente seus princípios e perspectivas quanto à sua aplicação prática. Além disso, tentaremos criar uma estratégia baseada nele.
Expert Advisors baseado em sistemas de trading populares e alquimia da otimização de robô de trading (Parte II)
Nesse artigo, o autor dá um exemplo de Expert Advisor que cumpre as exigências declaradas em Rules of the Automated Trading Championship 2008.
Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)
O algoritmo Conformer, apresentado aqui, foi desenvolvido para prever o tempo, que, em termos de variabilidade e imprevisibilidade, pode ser comparado aos mercados financeiros. O Conformer é um método complexo que combina as vantagens dos modelos de atenção e das equações diferenciais ordinárias.
Força bruta para encontrar padrões (Parte V): uma nova perspectiva
Neste artigo, vou apresentar uma abordagem completamente diferente para o algorítmico de negociação, que levei um tempo considerável para desenvolver. Claro, tudo isso está relacionado ao meu programa de força bruta, que passou por várias mudanças, permitindo que ele resolva várias tarefas simultaneamente. No entanto, este artigo é mais geral e extremamente simples, sendo adequado até mesmo para aqueles que não têm conhecimento prévio ou apenas passaram por isso.
Validação cruzada combinatoriamente simétrica no MQL5
Neste artigo veremos como implementar a verificação cruzada combinatoriamente simétrica no MQL5 puro para medir o grau de ajuste após a otimização de uma estratégia usando o algoritmo completo e lento do testador de estratégias.
Como desenvolver um sistema de negociação baseado no indicador Momentum
No meu artigo anterior, eu mencionei a importância de identificar a tendência que é a direção dos preços. Neste artigo, eu compartilharei um dos conceitos e indicadores mais importantes que é o indicador Momentum. Eu compartilharei como desenvolver um sistema de negociação com base no indicador Momentum.
Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,
Continuamos a estudar o aprendizado Q distribuído e hoje veremos essa abordagem de outro ponto de vista. Falaremos sobre a possibilidade de usar regressão quantílica para resolver o problema de previsão de movimentos de preços.
Como usar registros de parada de funcionamento para depurar os seus próprios DLLs
De 25 a 30% de todos os registros de parada de funcionamento recebidos de usuários surgem por conta de erros ocorridos quando funções importadas de dlls personalizados são executadas.
Desenvolvendo um EA multimoeda (Parte 9): Coleta dos resultados de otimização de instâncias individuais da estratégia de trading
Vamos delinear as principais etapas para o desenvolvimento do nosso EA. Uma das primeiras será realizar a otimização de uma instância individual da estratégia de trading desenvolvida. Tentaremos reunir em um único lugar todas as informações necessárias sobre as execuções do testador durante a otimização.
Expert Advisors baseado em sistemas de trading populares e alquimia da otimização de robô de trading (Parte IV)
Nesse artigo o autor continua a analisar algoritmos de implementação de sistemas de negociação simples e introduz os registros de resultados de otimização nos testes de simulação em um arquivo html na forma de uma tabela. O artigo será útil para investidores iniciantes e desenvolvedores de EA.
Estratégia de negociação RSI Deep Three Move
Este artigo apresenta a estratégia de negociação RSI Deep Three Move no MetaTrader 5. O artigo é baseado em uma nova série de pesquisas que demonstram vários métodos de negociação com base no RSI, que é um indicador técnico para medir a força e o impulso de ativos financeiros, incluindo ações, moedas e commodities.
Filtragem de acordo com o histórico
O artigo descreve o uso de negociações virtuais como uma parte integral do filtro de abertura de negociações.
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 08): Travando o Indicador
Aqui vou mostrar como travar um indicador, usando pura e simplesmente a linguagem MQL5, de uma forma muito interessante e surpreendente.
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 5): Bandas de Bollinger no canal de Keltner — Sinais dos indicadores
Neste artigo, por EA multimoeda, entendemos um robô investidor, que pode negociar (abrir/fechar ordens, gerenciar ordens, por exemplo, do tipo trailing stop-loss e trailing profit) mais de um par de moedas em um gráfico. Neste artigo, utilizaremos sinais de dois indicadores, nomeadamente Bandas de Bollinger (Bollinger Bands®) e canal de Keltner.
Como desenvolver um sistema de negociação baseado no indicador Índice de Vigor Relativo
Um novo artigo em nossa série sobre como desenvolver um sistema de negociação pelo indicador técnico mais popular. Neste artigo, nós aprenderemos como fazer isso pelo indicador Índice de Vigor Relativo.
Arbitragem Estatística com previsões
Vamos explorar a arbitragem estatística, pesquisar com Python símbolos correlacionados e cointegrados, criar um indicador para o coeficiente de Pearson e desenvolver um EA para negociar arbitragem estatística com previsões feitas com Python e modelos ONNX.
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 1): Sinais baseados no ADX em combinação com o Parabolic SAR
Neste artigo, por EA multimoeda, entendemos um Expert Advisor ou robô de negociação capaz de negociar (abrir/fechar ordens, gerenciar ordens, etc.) mais de um par de símbolos a partir de um único gráfico.
Expert Advisors baseado em sistemas de trading populares e alquimia da otimização de robô de trading (Parte II)
Nesse artigo o autor continua a analisar algoritmos de implementação dos sistemas de negociação mais simples e descreve alguns detalhes relevantes da utilização dos resultados de otimização. O artigo será útil para investidores iniciantes e desenvolvedores de EA.
Simulação de mercado (Parte 02): Cross Order (II)
Diferente do que foi visto no artigo anterior, aqui vamos fazer o controle de seleção no Expert Advisor. Porém, esta não é uma solução ainda definitiva. Mas irá nos atender por hora. Então acompanhe o artigo para entender como implementar uma das soluções possíveis.
Experiências com redes neurais (Parte 1): Lembrando a geometria
As redes neurais são tudo para nós. Vamos ver se isso é verdade na prática. Para tal, vamos fazer experiências e adotar abordagens não-convencionais. Vamos escrever também um sistema de negociação lucrativo. A explicação vai ser simples.
Trabalhando com séries temporais na biblioteca DoEasy (Parte 59): objeto para armazenar dados de um tick
Com este artigo, vamos começar a criar a funcionalidade de biblioteca para trabalhar com dados de preços. Hoje vamos criar uma classe de objeto que armazenará todos os dados de preços recebidos no tick a seguir.