Artigos sobre como automatizar sistemas de negociação na linguagem MQL5

icon

Leia artigos sobre sistemas de negociação baseados em uma ampla diversidade de conceitos. Aprenda a usar métodos estatísticos e padrões sobre velas japonesas, a filtrar sinais e dominar indicadores 'semáforo'.

Graças ao Assistente MQL5, e sem ter que programar, você pode criar robôs para testar rapidamente suas ideias de negociação, além de aprender sobre algoritmos genéticos, entre outras coisas.

Novo artigo
recentes | melhores
preview
Otimização de portfólio em Forex: Síntese de VaR e teoria de Markowitz

Otimização de portfólio em Forex: Síntese de VaR e teoria de Markowitz

Como se realiza o trading com portfólio em Forex? Como pode ser feita a síntese entre a teoria de portfólio de Markowitz para otimizar as proporções do portfólio e o modelo VaR para otimizar o risco do portfólio? Vamos criar um código baseado na teoria de portfólio, onde, de um lado, obtemos um risco reduzido e, do outro, uma rentabilidade de longo prazo aceitável.
preview
Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5

Escrevemos o primeiro modelo de caixa de vidro (Glass Box) em Python e MQL5

Os modelos de aprendizado de máquina são difíceis de interpretar, e entender o motivo pelo qual os modelos não atendem às nossas expectativas pode ajudar muito a alcançar o resultado desejado ao usar esses métodos modernos. Sem um entendimento abrangente do funcionamento interno do modelo, pode ser difícil identificar erros que prejudicam o desempenho. Nesse processo, podemos dedicar tempo a criar funções que não impactam na qualidade da previsão. No final, por melhor que seja o modelo, perdemos todos os seus principais benefícios devido a nossos próprios erros. Felizmente, existe uma solução complexa, mas bem desenvolvida, que permite ver claramente o que está acontecendo sob o capô do modelo.
preview
Superando Desafios de Integração com ONNX

Superando Desafios de Integração com ONNX

ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Técnicas do MQL5 Wizard que você deve conhecer (Parte 15): Máquinas de Vetores de Suporte com o Polinômio de Newton

Máquinas de Vetores de Suporte classificam dados com base em classes predefinidas, explorando os efeitos de aumentar sua dimensionalidade. É um método de aprendizado supervisionado que é bastante complexo, dado seu potencial para lidar com dados multidimensionais. Neste artigo, consideramos como uma implementação muito básica de dados bidimensionais pode ser feita de maneira mais eficiente com o Polinômio de Newton ao classificar a ação do preço.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

Técnicas do MQL5 Wizard que você deve conhecer (Parte 26): Médias Móveis e o Exponente de Hurst

O Exponente de Hurst é uma medida de quanto uma série temporal se autocorrela ao longo do tempo. Entende-se que ele captura as propriedades de longo prazo de uma série temporal e, portanto, tem um peso significativo na análise de séries temporais, mesmo fora do contexto econômico/financeiro. No entanto, focamos em seu potencial benefício para os traders ao analisar como essa métrica poderia ser combinada com médias móveis para construir um sinal potencialmente robusto.
preview
Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.
preview
Instalação do MetaTrader 5 e de outros aplicativos da MetaQuotes no HarmonyOS NEXT

Instalação do MetaTrader 5 e de outros aplicativos da MetaQuotes no HarmonyOS NEXT

Os aplicativos da MetaQuotes, incluindo as plataformas MetaTrader 5 e MetaTrader 4, podem ser instalados em dispositivos com o sistema operacional HarmonyOS NEXT usando o componente DroiTong. Este artigo apresenta um guia passo a passo para instalar os programas em seu telefone ou notebook.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Redes neurais em trading: Modelos híbridos de sequências de grafos (GSM++)

Os modelos híbridos de sequências de grafos (GSM++) unem os pontos fortes de diferentes arquiteturas, garantindo alta precisão na análise de dados e otimização do custo computacional. Esses modelos se adaptam de forma eficiente a dados de mercado dinâmicos, melhorando a representação e o processamento das informações financeiras.
preview
Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line

O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.
preview
Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger

Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.
preview
Ciclos e trading

Ciclos e trading

Este artigo é dedicado ao uso de ciclos no trading. Nele, vamos tentar entender como construir uma estratégia de negociação com base em modelos cíclicos.
preview
Estratégia de trading "Captura de Liquidez" (Liquidity Grab)

Estratégia de trading "Captura de Liquidez" (Liquidity Grab)

A estratégia de captura de liquidez é um componente-chave do Smart Money Concepts (SMC), que visa identificar e aproveitar as ações dos participantes institucionais no mercado. Ela envolve mirar áreas de alta liquidez, como zonas de suporte ou resistência, onde ordens de grande volume podem provocar um movimento de preço antes que o mercado retome sua tendência. Este artigo explica em detalhes o conceito de captura de liquidez e descreve o processo de desenvolvimento de um EA para a estratégia de captura de liquidez em MQL5.
preview
Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)

Redes neurais de maneira fácil (Parte 79): consultas agregadas de características (FAQ)

No artigo anterior, nos familiarizamos com um dos métodos de detecção de objetos em imagens. No entanto, o processamento de imagens estáticas é um pouco diferente do trabalho com séries temporais dinâmicas, como aquelas relacionadas à dinâmica dos preços que estamos analisando. Neste artigo, quero apresentar a você o método de detecção de objetos em vídeo, que é mais relevante para a nossa tarefa atual.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Desenvolvendo um EA multimoeda (Parte 17): Preparação adicional para o trading real

Atualmente, nosso EA utiliza um banco de dados para obter as strings de inicialização de instâncias individuais de estratégias de trading. No entanto, o banco de dados é bastante volumoso e contém muitas informações desnecessárias para a operação real do EA. Tentaremos garantir o funcionamento do EA sem a necessidade de conexão obrigatória ao banco de dados.
preview
Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Neste artigo iremos dissecar o serviço de teste que foi visto no artigo anterior. Mas por conta que lá já havia muita informação, e não queria complicar a coisa toda com mais informações. Vamos fazer isto neste artigo daqui. Então se você não tem ideia de como o serviço que foi visto no artigo anterior, permitia que as coisas funcionassem daquela forma. Venha comigo neste artigo para compreender o que será base para os próximos artigos.
preview
Desenvolvendo um sistema de Replay (Parte 53): Complicando as coisas (V)

Desenvolvendo um sistema de Replay (Parte 53): Complicando as coisas (V)

Neste artigo irei introduzir um tema muito importante, porém que poucos de fato compreender. Eventos Customizados. Perigos. Vantagens e falhas causados por tais coisas. Este assunto é muito importante para quem deseja se tornar um programador profissional em MQL5, ou em qualquer outro tipo de linguagem. Mas aqui iremos focar no MQL5 e no MetaTrader 5.
preview
Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)

Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)

Continuamos nossa análise, desta vez, explorando a família de transformadores de decisão. Em trabalhos anteriores, já observamos que o treinamento do transformador subjacente à arquitetura desses métodos é bastante desafiador e requer uma grande quantidade de dados de treinamento rotulados. Neste artigo, consideramos um algoritmo para usar trajetórias não rotuladas com o objetivo de pré-treinar modelos.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 37): Regressão por Processo Gaussiano com Núcleos Lineares e de Matérn

Técnicas do MQL5 Wizard que você deve conhecer (Parte 37): Regressão por Processo Gaussiano com Núcleos Lineares e de Matérn

Os núcleos lineares são a matriz mais simples de seu tipo usada em aprendizado de máquina para regressão linear e máquinas de vetor de suporte. O núcleo de Matérn, por outro lado, é uma versão mais versátil da Função de Base Radial que analisamos em um artigo anterior, e é hábil em mapear funções que não são tão suaves quanto o RBF pressupõe. Construímos uma classe de sinal personalizada que utiliza ambos os núcleos para prever condições de compra e venda.
preview
MQL5 Trading Toolkit (Parte 3): Desenvolvimento de uma biblioteca EX5 para gerenciamento de ordens pendentes

MQL5 Trading Toolkit (Parte 3): Desenvolvimento de uma biblioteca EX5 para gerenciamento de ordens pendentes

Você aprenderá como desenvolver e implementar uma biblioteca EX5 abrangente para ordens pendentes em seu código ou projetos MQL5. Vamos analisar como importar e implementar essa biblioteca como parte de um painel de negociação ou interface gráfica do usuário (GUI). O painel de ordens do EA permitirá aos usuários abrir, acompanhar e excluir ordens pendentes por número mágico diretamente na interface gráfica exibida na janela do gráfico.
preview
Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

À medida que avançamos, utilizamos cada vez mais instâncias simultâneas de estratégias de negociação em um único EA. Vamos descobrir até quantas instâncias podemos utilizar antes de nos depararmos com limitações de recursos.
preview
EA baseado em um aproximador universal MLP

EA baseado em um aproximador universal MLP

Este artigo apresenta uma forma simples e acessível de usar uma rede neural em um EA, que não exige conhecimento aprofundado em aprendizado de máquina. O método elimina a necessidade de normalizar a função alvo e evita problemas como “explosão de pesos” e “paralisação da rede”, oferecendo um aprendizado intuitivo com controle visual dos resultados.
preview
Automatização de estratégias de trading com MQL5 (Parte 1): Sistema Profitunity (Trading Chaos de Bill Williams)

Automatização de estratégias de trading com MQL5 (Parte 1): Sistema Profitunity (Trading Chaos de Bill Williams)

Neste artigo exploraremos o sistema Profitunity de autoria de Bill Williams, destrinchando seus principais componentes e sua abordagem única para operar em condições caóticas de mercado. Demonstramos para o leitor a implementação da estratégia na linguagem de programação MQL5, com ênfase na automatização dos principais indicadores e sinais de entrada/saída. Finalmente, testaremos e otimizaremos a estratégia, analisando em detalhes sua eficácia em diferentes cenários de mercado.
preview
Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro

Negociando com o Calendário Econômico do MQL5 (Parte 5): Aprimorando o Painel com Controles Responsivos e Botões de Filtro

Neste artigo, criamos botões para filtros de pares de moedas, níveis de importância, filtros de tempo e uma opção de cancelamento para melhorar o controle do painel. Esses botões são programados para responder dinamicamente às ações do usuário, permitindo uma interação contínua. Também automatizamos seu comportamento para refletir mudanças em tempo real no painel. Isso aprimora a funcionalidade geral, a mobilidade e a responsividade do painel.
preview
Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)

Redes neurais em trading: Detecção Adaptativa de Anomalias de Mercado (DADA)

Apresentamos o DADA, um framework inovador para identificação de anomalias em séries temporais. Ele ajuda a distinguir oscilações aleatórias de desvios suspeitos. Ao contrário dos métodos tradicionais, o DADA se ajusta de maneira flexível a diferentes conjuntos de dados. Em vez de usar um nível fixo de compressão, ele testa vários níveis e escolhe o mais adequado para cada situação.
preview
Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer

Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.
preview
Algoritmo de arquearia — Archery Algorithm (AA)

Algoritmo de arquearia — Archery Algorithm (AA)

Neste artigo, examinamos detalhadamente o algoritmo de otimização inspirado na arquearia, com foco no uso do método de roleta como mecanismo de seleção de áreas promissoras para a colocação das "flechas". Esse método permite avaliar a qualidade das soluções e selecionar as posições mais promissoras para um estudo mais aprofundado.
preview
Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências

Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.
preview
De Novato a Especialista: A Jornada Essencial no Comércio MQL5

De Novato a Especialista: A Jornada Essencial no Comércio MQL5

Desbloqueie seu potencial! Você está cercado de oportunidades. Descubra 3 segredos principais para iniciar sua jornada MQL5 ou levá-la para o próximo nível. Vamos mergulhar na discussão de dicas e truques para iniciantes e profissionais.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
preview
Desenvolvendo Sistemas de Trading ICT Avançados: Implementando Order Blocks em um Indicador

Desenvolvendo Sistemas de Trading ICT Avançados: Implementando Order Blocks em um Indicador

Neste artigo, vamos aprender a criar um indicador que detecta, desenha e emite alertas sobre a mitigação de order blocks. Também veremos em detalhes como identificar esses blocos no gráfico, configurar alertas precisos e visualizar sua posição utilizando retângulos, para compreender melhor a ação do preço. Este indicador servirá como uma ferramenta-chave para traders que seguem os Smart Money Concepts e a metodologia do Inner Circle Trader.
preview
Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)

Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)

Apresentamos o novo framework PSformer, que adapta a arquitetura do Transformer puro para resolver tarefas de previsão de séries temporais multivariadas. O framework é baseado em duas inovações principais: o mecanismo de compartilhamento de parâmetros (PS) e a atenção aos segmentos espaço-temporais (SegAtt).
preview
Indicador de força e direção da tendência em barras 3D

Indicador de força e direção da tendência em barras 3D

Vamos considerar uma nova abordagem para analisar tendências de mercado, baseada em visualização tridimensional e análise tensora da microestrutura do mercado.
preview
Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino

Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino

Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.
preview
Percepções de Negociação por Meio do Volume: Confirmação de Tendência

Percepções de Negociação por Meio do Volume: Confirmação de Tendência

A Técnica Aprimorada de Confirmação de Tendência combina ação de preço, análise de volume e aprendizado de máquina para identificar movimentos genuínos do mercado. Ela requer tanto rompimentos de preço quanto aumentos de volume (50% acima da média) para validação da negociação, enquanto utiliza uma rede neural LSTM para confirmação adicional. O sistema emprega dimensionamento de posição baseado em ATR e gerenciamento dinâmico de risco, tornando-o adaptável a várias condições de mercado, ao mesmo tempo em que filtra sinais falsos.
preview
Desenvolvendo um sistema de Replay (Parte 52): Complicando as coisas (IV)

Desenvolvendo um sistema de Replay (Parte 52): Complicando as coisas (IV)

Neste artigo vamos fazer uma mudança no indicador de mouse a fim de poder efetuar a interação com o indicador de controle, já que a interação está sendo feita de forma errática.
preview
Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)

Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)

Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.
preview
Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

Desenvolvendo um EA multimoeda (Parte 15): Preparando o EA para o trading real

À medida que nos aproximamos de um EA pronto, é necessário prestar atenção em questões secundárias na etapa de teste da estratégia de trading, mas que se tornam importantes ao migrar para o trading real.
preview
Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas

Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas

Neste artigo, vamos aprimorar a responsividade do Painel Administrativo que criamos anteriormente. Além disso, vamos explorar a importância das mensagens rápidas no contexto de sinais de negociação.