Artigos sobre como automatizar sistemas de negociação na linguagem MQL5

icon

Leia artigos sobre sistemas de negociação baseados em uma ampla diversidade de conceitos. Aprenda a usar métodos estatísticos e padrões sobre velas japonesas, a filtrar sinais e dominar indicadores 'semáforo'.

Graças ao Assistente MQL5, e sem ter que programar, você pode criar robôs para testar rapidamente suas ideias de negociação, além de aprender sobre algoritmos genéticos, entre outras coisas.

Novo artigo
recentes | melhores
preview
Desenvolvendo um EA multimoeda (Parte 2): Transição para posições virtuais de estratégias de trading

Desenvolvendo um EA multimoeda (Parte 2): Transição para posições virtuais de estratégias de trading

Vamos continuar a desenvolver o EA multimoeda com várias estratégias funcionando paralelamente. Tentaremos transferir todo o trabalho relacionado à abertura de posições a mercado do nível das estratégias para o nível do expert que gerencia as estratégias. As próprias estratégias irão negociar apenas virtualmente, sem abrir posições a mercado.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 2): Mesclando Indicadores Nativos

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 2): Mesclando Indicadores Nativos

Este artigo foca em aproveitar os indicadores embutidos no MetaTrader 5 para filtrar sinais fora da tendência. Avançando a partir do artigo anterior, exploraremos como fazer isso usando o código MQL5 para comunicar nossa ideia ao programa final.
preview
Teoria do caos no trading (Parte 2): Continuamos a imersão

Teoria do caos no trading (Parte 2): Continuamos a imersão

Continuamos a imersão na teoria do caos nos mercados financeiros e analisamos sua aplicabilidade à análise de moedas e outros ativos.
preview
Paradigmas de programação (Parte 1): Abordagem procedural para desenvolvimento de Expert Advisors com base na dinâmica de preços

Paradigmas de programação (Parte 1): Abordagem procedural para desenvolvimento de Expert Advisors com base na dinâmica de preços

Aprenda sobre paradigmas de programação e suas aplicações no código MQL5. Neste artigo, exploramos as características da programação procedural, além de oferecer exemplos práticos. Você aprenderá como desenvolver um Expert Advisor baseado na dinâmica de preços (Price Action), utilizando o indicador EMA e dados de velas. Além disso, o artigo apresenta o paradigma da programação funcional.
preview
Teoria do caos no trading (Parte 2): Continuamos a imersão

Teoria do caos no trading (Parte 2): Continuamos a imersão

Continuamos a imersão na teoria do caos nos mercados financeiros e analisamos sua aplicabilidade à análise de moedas e outros ativos.
preview
Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)

Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)

Neste artigo, veremos como deveremos implementar a parte do receptor. Ou seja, aqui implementaremos uma versão do Expert Advisor, apenas para testar e aprender como a comunicação via protocolo funciona. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Experimentos com redes neurais (Parte 7): Transferência de indicadores

Experimentos com redes neurais (Parte 7): Transferência de indicadores

Desta vez, veremos exemplos de passagem de indicadores ao perceptron. Abordaremos conceitos gerais, um Expert Advisor simples pronto, os resultados de sua otimização e testes forward.
preview
Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Nos capítulos anteriores, o EA desenvolvido só podia usar um tamanho de posição fixo para negociações. Isso é adequado para testes, mas não é aconselhável ao negociar mediante uma conta real. Vamos adicionar a capacidade de operar com tamanhos de posição variáveis.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons

Os perceptrons, redes com uma única camada oculta, podem ser um bom suporte para aqueles familiarizados com os fundamentos do trading automático e que desejam mergulhar nas redes neurais. Vamos examinar passo a passo como eles podem ser implementados no conjunto de classes de sinais, que faz parte das classes do Assistente MQL5 para EAs.
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.
preview
Indicador Customizado: Traçar os Pontos de Entradas Parciais em contas Netting

Indicador Customizado: Traçar os Pontos de Entradas Parciais em contas Netting

Nesse artigo, veremos uma forma interessante e diferente de construir um indicador em MQL5. Ao invés de focar em uma tendência ou padrão gráfico, será no gerenciamento de nossas próprias posições, nas entradas e saídas parciais. Usaremos intensivamente arrays dinâmicos e algumas funções de negociação (Trade) relacionadas a histórico de transações e a posições abertas, naturalmente, para indicar no gráfico onde ocorreram essas negociações.
preview
Teoria das Categorias em MQL5 (Parte 17): funtores e monoides

Teoria das Categorias em MQL5 (Parte 17): funtores e monoides

Este é o último artigo da série dedicada a funtores. Nele, reconsideramos monoides como uma categoria. Os monoides, que já apresentamos nesta série, são usados aqui para ajudar na definição do tamanho da posição juntamente com perceptrons multicamadas.
preview
Criação de um EA em MQL5 com base na estratégia PIRANHA utilizando Bandas de Bollinger

Criação de um EA em MQL5 com base na estratégia PIRANHA utilizando Bandas de Bollinger

Neste artigo, criamos um EA (Expert Advisor) em MQL5 com base na estratégia PIRANHA, utilizando as Bandas de Bollinger para aumentar a eficiência da negociação. Discutimos os princípios-chave da estratégia, a implementação do código, bem como os métodos de teste e otimização. Esse conhecimento permitirá usar o EA com eficácia em seus cenários de trading.
preview
Desenvolvendo um EA multimoeda (Parte 3): Revisão da arquitetura

Desenvolvendo um EA multimoeda (Parte 3): Revisão da arquitetura

Nós já avançamos um pouco no desenvolvimento de um EA multimoeda com várias estratégias funcionando em paralelo. Com base na experiência acumulada, vamos revisar a arquitetura da nossa solução e tentar melhorá-la, antes que avancemos muito.
preview
Testador rápido de estratégias de trading em Python usando Numba

Testador rápido de estratégias de trading em Python usando Numba

O artigo apresenta um testador rápido de estratégias para modelos de aprendizado de máquina com o uso do Numba. Em termos de velocidade, ele supera o testador de estratégias feito em Python puro em 50 vezes. O autor recomenda o uso dessa biblioteca para acelerar cálculos matemáticos, especialmente em casos que envolvem laços.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque

O Ângulo de Ataque é uma métrica frequentemente citada, cuja inclinação é entendida como tendo uma forte correlação com a força de uma tendência predominante. Vamos analisar como ele é comumente usado e compreendido e examinar se há mudanças que poderiam ser introduzidas na forma como é medido, para benefício de um sistema de negociação que o utilize.
preview
Redes neurais de maneira fácil (Parte 65): aprendizado supervisionado ponderado por distância (DWSL)

Redes neurais de maneira fácil (Parte 65): aprendizado supervisionado ponderado por distância (DWSL)

Neste artigo, convido você a conhecer um algoritmo interessante que se situa na interseção entre os métodos de aprendizado supervisionado e de reforço.
preview
Métodos de William Gann (Parte II): Criando um Indicador do Quadrado de Gann

Métodos de William Gann (Parte II): Criando um Indicador do Quadrado de Gann

Vamos tentar criar um indicador baseado no Quadrado de 9 de Gann, construído com base na quadratura do tempo e do preço. Escreveremos o código e testaremos o indicador na plataforma em diferentes intervalos de tempo.
preview
Desenvolvendo um sistema de Replay (Parte 77): Um novo Chart Trade (IV)

Desenvolvendo um sistema de Replay (Parte 77): Um novo Chart Trade (IV)

Neste artigo, explicarei alguns detalhes e cuidados que você teve tomar quando for criar um protocolo de comunicação. São coisas bem básicas e simples. Não irei de fato pegar pesado neste artigo. Mas é preciso que você entenda o conteúdo deste artigo para entender o que acontecerá no receptor.
preview
Redes neurais em trading: Representação linear por partes de séries temporais

Redes neurais em trading: Representação linear por partes de séries temporais

Este artigo é um pouco diferente dos trabalhos anteriores desta série. Nele, discutiremos uma representação alternativa de séries temporais. A representação linear por partes de séries temporais é um método de aproximação de séries temporais usando funções lineares em pequenos intervalos.
preview
Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)

Nesta quarta parte, revisitamos os Expert Advisors (EAs) Simple Hedge e Simple Grid desenvolvidos anteriormente. Nosso foco agora é refinar o Simple Grid EA por meio de análise matemática e uma abordagem de força bruta, visando o uso ideal da estratégia. Este artigo mergulha profundamente na otimização matemática da estratégia, preparando o terreno para futuras explorações de otimização baseada em código em artigos posteriores.
preview
Redes neurais em trading:  Modelos híbridos de sequências de grafos (Conclusão)

Redes neurais em trading: Modelos híbridos de sequências de grafos (Conclusão)

Seguimos o estudo de modelos híbridos de sequências de grafos (GSM++), que integram as vantagens de diferentes arquiteturas e garantem alta precisão na análise, além de uso eficiente dos recursos computacionais. Esses modelos identificam, de maneira eficaz, padrões ocultos, reduzindo o impacto do ruído de mercado e elevando a qualidade das previsões.
preview
Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Pelo resultado dos testes realizados em artigos anteriores, concluímos que a qualidade da estratégia treinada depende muito da amostra de treinamento utilizada. Neste artigo, apresento a vocês um método simples e eficaz para selecionar trajetórias com o objetivo de treinar modelos.
preview
Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos

Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos

Neste artigo, integramos botões inline interativos em um Expert Advisor MQL5, permitindo controle em tempo real via Telegram. Cada clique em um botão dispara ações específicas e envia respostas de volta ao usuário. Também modularizamos funções para lidar com mensagens do Telegram e consultas de callback de forma eficiente.
preview
Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

O projeto envolve o uso de Python para previsão em mercados financeiros baseada em aprendizado profundo. Nós exploraremos as nuances do teste de desempenho do modelo usando indicadores-chave como erro absoluto médio (MAE), erro quadrático médio (MSE) e R-quadrado (R2), além de aprender a integrar tudo isso em um arquivo executável. Também criaremos um arquivo de modelo ONNX e um EA (Expert Advisor).
preview
Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

As últimas 2 partes foram dedicadas ao método transformador de decisões (DT), que modela sequências de ações no contexto de um modelo autorregressivo de recompensas desejadas. Neste artigo, vamos considerar outro algoritmo de otimização deste método.
preview
Desenvolvimento e teste de sistemas de negociação Aroon

Desenvolvimento e teste de sistemas de negociação Aroon

Nesta artigo, aprenderemos como construir um sistema de negociação Aroon, estudando os fundamentos dos indicadores e as etapas necessárias para criar um sistema de negociação baseado no indicador Aroon. Depois de criar este sistema de negociação, verificaremos se ele pode ser lucrativo ou se necessita de otimização adicional.
preview
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)

Esta parte da série de artigos é dedicada à integração do WhatsApp com o MetaTrader 5 para notificações. Incluímos um fluxograma para simplificar o entendimento e discutiremos a importância das medidas de segurança na integração. O principal objetivo dos indicadores é simplificar a análise por meio da automação, e eles devem incluir métodos de notificação para alertar os usuários quando condições específicas forem atendidas. Descubra mais neste artigo.
preview
Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Algoritmo baseado em fractais - Fractal-Based Algorithm (FBA)

Um novo método metaheurístico baseado na abordagem fractal de divisão do espaço de busca para resolver tarefas de otimização. O algoritmo identifica e divide sequencialmente áreas promissoras, criando uma estrutura fractal auto-semelhante que concentra os recursos computacionais nos trechos mais promissores. Um mecanismo exclusivo de mutação, direcionado para as melhores soluções, garante um equilíbrio ideal entre diversificação e intensificação do espaço de busca, aumentando significativamente a eficiência do algoritmo.
preview
Redes neurais de maneira fácil (Parte 52): exploração com otimização e correção de distribuição

Redes neurais de maneira fácil (Parte 52): exploração com otimização e correção de distribuição

À medida que a política do Ator se afasta cada vez mais dos exemplos armazenados no buffer de reprodução de experiências, a eficácia do treinamento do modelo, baseado nesse buffer, diminui. Neste artigo, examinamos um algoritmo que aumenta a eficácia do uso de amostras em algoritmos de aprendizado por reforço.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais

O agrupamento k-médias é uma abordagem para agrupar pontos de dados em um processo que inicialmente se concentra na representação macro do conjunto de dados, onde são aplicados centroides de cluster criados aleatoriamente. Com o tempo, esses centroides são ajustados e escalonados para representar melhor o conjunto de dados. Este artigo examina essa abordagem de agrupamento e algumas de suas aplicações.
preview
Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

As médias móveis e o oscilador estocástico podem ser usados para gerar sinais de negociação de tendência. No entanto, esses sinais só serão observados após a ação do preço ter ocorrido. Podemos superar efetivamente essa defasagem inerente dos indicadores técnicos usando IA. Este artigo ensinará como criar um Expert Advisor totalmente autônomo com IA, de forma a melhorar qualquer uma de suas estratégias de negociação existentes. Até mesmo a estratégia de negociação mais antiga possível pode ser aprimorada.
preview
Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

No EA em desenvolvimento, já temos um mecanismo de controle de rebaixamento implementado. No entanto, ele tem uma natureza probabilística, pois se baseia nos resultados de testes com dados históricos de preços. Assim, o rebaixamento, embora com pequena probabilidade, às vezes pode exceder os valores máximos esperados. Vamos tentar adicionar um mecanismo que garanta a manutenção de um nível de rebaixamento predefinido.
preview
Modelos de regressão não linear no mercado

Modelos de regressão não linear no mercado

Modelos de regressão não linear no mercado: é realmente possível prever os mercados financeiros? Vamos tentar criar um modelo para prever os preços do euro-dólar e, com base nele, fazer dois robôs: um em Python e outro em MQL5.
preview
Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina

Modelos ocultos de Markov em sistemas de trading com aprendizado de máquina

Os modelos ocultos de Markov (HMM) representam uma classe poderosa de modelos probabilísticos, destinados à análise de dados sequenciais, nos quais os eventos observáveis dependem de alguma sequência de estados não observáveis (ocultos), que formam um processo de Markov. As principais suposições dos HMM incluem a propriedade de Markov para os estados ocultos, o que significa que a probabilidade de transição para o próximo estado depende apenas do estado atual, e a independência das observações, desde que o estado oculto atual seja conhecido.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência

Neste artigo, exploraremos as capacidades da poderosa linguagem MQL5 na criação de vários estilos de indicadores no MetaTrader 5. Também analisaremos os scripts e como eles podem ser utilizados em nosso modelo.
preview
Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Continuamos a examinar funtores e como eles podem ser implementados usando redes neurais artificiais. Vamos temporariamente deixar de lado a abordagem que incluía a previsão de volatilidade, e tentar implementar nossa própria classe de sinais para estabelecer sinais para entrar e sair de uma posição.
preview
Busca de padrões arbitrários em pares de moedas no Python com o uso do MetaTrader 5

Busca de padrões arbitrários em pares de moedas no Python com o uso do MetaTrader 5

Existem padrões repetitivos e regularidades no mercado cambial? Decidi criar meu próprio sistema de análise de padrões usando Python e MetaTrader 5. Uma espécie de simbiose entre matemática e programação para conquistar o Forex.
preview
Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos

Este artigo é voltado para desenvolvedores iniciantes e experientes em MQL5. Ele oferece um código que define indicadores para gerar sinais, limitando-os com base nas tendências de timeframes mais altos. Dessa forma, traders podem aprimorar suas estratégias ao incluir uma visão mais ampla do mercado, o que pode resultar em sinais de negociação potencialmente mais confiáveis.
preview
Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.