Simulação de mercado (Parte 12): Sockets (VI)
Neste artigo, vamos ver como resolver algumas questões e ver alguns problemas que temos ao usar código feito em Python dentro de outros programas. No caso o que mostrarei aqui, é um típico problema que existe, quando você vai usar o Excel junto com o MetaTrader 5. Mas para fazer esta comunicação estaremos usando o Python. Porém existe um pequeno problema nesta implementação. Não em todos os casos, mas em alguns casos específicos e quando o problema ocorre você tem que entender por que ele ocorre. Neste artigo iniciarei a explicação de como resolver tal coisa.
Redes neurais de maneira fácil (Parte 20): autocodificadores
Continuamos a estudar algoritmos de aprendizado não supervisionado. Talvez você como o leitor possa ter dúvidas sobre se as publicações recentes se encaixam no tópico de redes neurais. Neste novo artigo, voltamos ao uso de redes neurais.
Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)
O GSA é um algoritmo populacional inspirado na natureza inanimada. Sua capacidade de modelar com alta precisão a interação entre corpos físicos, através da lei da gravidade de Newton incorporada no algoritmo, permite contemplar um espetáculo fascinante de dança entre sistemas planetários e aglomerados galácticos, representado de forma impressionante em animações. Hoje vamos discutir um dos algoritmos de otimização mais interessantes e originais. Um simulador de movimento de objetos espaciais está incluído.
Algoritmos de otimização populacionais: Algoritmo de mudas, semeadura e crescimento (SSG)
O algoritmo de “mudas, semeadura e crescimento” (Saplings Sowing and Growing up, SSG) é inspirado em um dos organismos mais resistentes do planeta, um exemplo notável de sobrevivência em inúmeras condições.
Anotação de dados na análise de série temporal (Parte 2): Criação de conjuntos de dados com rótulos de tendência usando Python
Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
Algoritmo de otimização baseado em brainstorming — Brain Storm Optimization (Parte I): Clusterização
Neste artigo, discutimos um método inovador de otimização chamado BSO (Brain Storm Optimization), inspirado na tempestade de ideias (brainstorming). Também abordamos um novo enfoque para resolver problemas de otimização multimodal que utiliza o BSO, permitindo encontrar várias soluções ótimas sem a necessidade de definir previamente o número de subpopulações. Além disso, analisamos os métodos de clusterização K-Means e K-Means++.
Data Science e Machine Learning (Parte 25): Previsão de Séries Temporais de Forex Usando uma Rede Neural Recorrente (RNN)
Redes neurais recorrentes (RNNs) se destacam em utilizar informações passadas para prever eventos futuros. Suas notáveis capacidades preditivas foram aplicadas em diversos domínios com grande sucesso. Neste artigo, implementaremos modelos de RNN para prever tendências no mercado de forex, demonstrando seu potencial para aumentar a precisão das previsões no trading de forex.
Algoritmo de otimização por reações químicas — Chemical Reaction Optimisation, CRO (Parte II): Montagem e resultados
Na segunda parte do artigo, reuniremos os operadores químicos em um único algoritmo e apresentaremos uma análise detalhada de seus resultados. Descobriremos como o método de otimização por reações químicas (CRO) superou o desafio de resolver problemas complexos em funções de teste.
Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)
Neste artigo, veremos como deveremos implementar a parte do receptor. Ou seja, aqui implementaremos uma versão do Expert Advisor, apenas para testar e aprender como a comunicação via protocolo funciona. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Ciência de Dados e Aprendizado de Máquina (Parte 15): SVM — uma ferramenta útil no arsenal do trader
Neste artigo, exploraremos o papel que o método de máquinas de vetores de suporte (<i>support vector machines</i>, SVM) desempenha na formação do futuro do trading. Este artigo pode ser visto como um guia detalhado que explica como usar o SVM para melhorar estratégias de trading, otimizar a tomada de decisões e descobrir novas oportunidades nos mercados financeiros. Você mergulhará no mundo do SVM através de aplicações reais, instruções passo a passo e avaliações de especialistas. Talvez essa ferramenta indispensável o ajude a entender as complexidades do trading moderno. De qualquer forma, o SVM se tornará uma ferramenta muito útil no arsenal de cada trader.
Algoritmos de otimização populacionais: otimização de dinâmica espiral (Spiral Dynamics Optimization, SDO)
Neste artigo examinaremos a otimização de dinâmica espiral (SDO), um algoritmo de otimização baseado nos padrões de trajetórias espirais presentes na natureza, como nas conchas de moluscos. O algoritmo proposto pelos autores foi completamente repensado e modificado por mim, e o artigo discutirá por que essas mudanças foram necessárias.
Teoria do caos no trading (Parte 2): Continuamos a imersão
Continuamos a imersão na teoria do caos nos mercados financeiros e analisamos sua aplicabilidade à análise de moedas e outros ativos.
Elementos da análise correlacional em MQL5: Critério de independência qui-quadrado de Pearson e relação de correlação
O artigo aborda as ferramentas clássicas da análise correlacional. São apresentadas as bases teóricas breves, bem como a implementação prática do critério de independência qui-quadrado de Pearson e o coeficiente de relação de correlação.
Engenharia de Features com Python e MQL5 (Parte I): Previsão de Médias Móveis para Modelos de IA de Longo Alcance
As médias móveis são, de longe, os melhores indicadores para nossos modelos de IA preverem. No entanto, podemos melhorar ainda mais nossa precisão transformando cuidadosamente nossos dados. Este artigo demonstrará como você pode construir Modelos de IA capazes de prever mais longe no futuro do que você talvez pratique atualmente, sem quedas significativas nos níveis de precisão. É realmente notável como as médias móveis são úteis.
Fatorando Matrizes — Uma modelagem mais prática
Muito provavelmente você não tenha se dado conta, que a modelagem das matrizes estava um tanto quanto estranha. Já que não havia a indicação de linhas e colunas, mas apenas indicações de colunas. O que é muito estranho, quando se está lendo um código, que faz fatorações de matrizes. E se você estava esperando ver linhas e colunas sendo indicadas. Pode acabar ficando bastante confuso, no momento de tentar implementar a fatoração. Além do mais, aquela forma de modelar as matrizes, não é nem de longe a melhor maneira. Isto por que, quando modelamos matrizes daquela maneira, passamos a ter uma certa limitação, que nos obriga a usar outras técnicas, ou funções, que não seriam de fato necessárias. Isto quando a modelagem é feita de uma maneira um pouco mais adequada.
Teoria das Categorias em MQL5 (Parte 2)
A Teoria das Categorias é um ramo diverso da Matemática e em expansão, sendo uma área relativamente recente na comunidade MQL5. Esta série de artigos visa introduzir e examinar alguns de seus conceitos com o objetivo geral de estabelecer uma biblioteca aberta que atraia comentários e discussões enquanto esperamos promover o uso deste campo notável no desenvolvimento da estratégia dos traders.
Teoria das Categorias em MQL5 (Parte 15): Funtores com grafos
Este artigo continua a série sobre a implementação da teoria de categorias no MQL5, ele aborda os funtores como uma ponte entre grafos e conjuntos. Nesse escopo, voltaremos a analisar os dados de calendário e, apesar de suas limitações no uso do testador de estratégias, justificaremos o uso de funtores na previsão de volatilidade mediante correlação.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 27): Médias Móveis e o Ângulo de Ataque
O Ângulo de Ataque é uma métrica frequentemente citada, cuja inclinação é entendida como tendo uma forte correlação com a força de uma tendência predominante. Vamos analisar como ele é comumente usado e compreendido e examinar se há mudanças que poderiam ser introduzidas na forma como é medido, para benefício de um sistema de negociação que o utilize.
Anotação de dados na análise de série temporal (Parte 3): Exemplo de uso de anotação de dados
Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
Desenvolvendo um sistema de Replay (Parte 60): Dando play no serviço (I)
Já faz um bom tempo que estamos mexendo apenas no indicadores. Mas agora chegou a hora de fazer o serviço voltar a executar o seu trabalho, a fim de que possamos ver o gráfico sendo construído com os dados informados. Mas como nem tudo é tão simples, será preciso ver para entender o que nos espera.
Funções de ativação de neurônios durante o aprendizado: chave para uma convergência rápida?
Este trabalho apresenta uma análise da interação entre diferentes funções de ativação e algoritmos de otimização no contexto do treinamento de redes neurais. A atenção principal está voltada para a comparação entre o ADAM clássico e sua versão populacional ao lidar com uma ampla gama de funções de ativação, incluindo as funções oscilatórias ACON e Snake. Mediante uma arquitetura MLP minimalista (1-1-1) e um único exemplo de treino, isola-se a influência das funções de ativação no processo de otimização, eliminando interferências de outros fatores. Propomos um método de controle dos pesos da rede por meio dos limites das funções de ativação e um mecanismo de reflexão de pesos, permitindo evitar problemas de saturação e estagnação no aprendizado.
Algoritmos de otimização populacional: Busca em sistema carregado (Charged System Search, CSS)
Neste artigo, vamos explorar outro algoritmo de otimização inspirado pela natureza inanimada, a busca em sistema carregado (CSS). O objetivo deste artigo é apresentar um novo algoritmo de otimização baseado nos princípios da física e mecânica.
Redes neurais de maneira fácil (Parte 39): Go-Explore - uma abordagem diferente para exploração
Continuamos com o tema da exploração do ambiente no aprendizado por reforço. Neste artigo, abordaremos mais um algoritmo, o Go-Explore, que permite explorar eficazmente o ambiente durante a fase de treinamento do modelo.
Desenvolvendo um sistema de Replay (Parte 77): Um novo Chart Trade (IV)
Neste artigo, explicarei alguns detalhes e cuidados que você teve tomar quando for criar um protocolo de comunicação. São coisas bem básicas e simples. Não irei de fato pegar pesado neste artigo. Mas é preciso que você entenda o conteúdo deste artigo para entender o que acontecerá no receptor.
Algoritmos de otimização populacional: sistema imune micro-artificial (Micro Artificial Immune System, Micro-AIS)
Este artigo fala sobre um método de otimização baseado nos princípios de funcionamento do sistema imunológico do organismo — Micro Artificial Immune System (Micro-AIS) — uma modificação do AIS. O Micro-AIS utiliza um modelo mais simples do sistema imunológico e operações mais simples de processamento de informações imunológicas. O artigo também aborda as vantagens e desvantagens do Micro-AIS em comparação com o AIS tradicional.
Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)
Nesta quarta parte, revisitamos os Expert Advisors (EAs) Simple Hedge e Simple Grid desenvolvidos anteriormente. Nosso foco agora é refinar o Simple Grid EA por meio de análise matemática e uma abordagem de força bruta, visando o uso ideal da estratégia. Este artigo mergulha profundamente na otimização matemática da estratégia, preparando o terreno para futuras explorações de otimização baseada em código em artigos posteriores.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons
Os perceptrons, redes com uma única camada oculta, podem ser um bom suporte para aqueles familiarizados com os fundamentos do trading automático e que desejam mergulhar nas redes neurais. Vamos examinar passo a passo como eles podem ser implementados no conjunto de classes de sinais, que faz parte das classes do Assistente MQL5 para EAs.
Algoritmos de otimização populacional: Algoritmo Boids, ou algoritmo de comportamento de enxame (Boids Algorithm, Boids)
Neste artigo, estudaremos algoritmo Boids, baseado em exemplos únicos de comportamento de enxame de animais. O algoritmo Boids, por sua vez, serviu como base para a criação de uma classe inteira de algoritmos, agrupados sob o nome de "Inteligência de Enxame".
Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro
Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.
Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)
O artigo analisa em detalhes os componentes-chave e as inovações do algoritmo de otimização ATA, que é um método evolutivo com um sistema de comportamento duplo único, que se adapta conforme a situação. Utilizando cruzamento para uma diversificação aprofundada, e migração para busca quando há estagnação em ótimos locais, o ATA combina aprendizado individual e social.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais
O agrupamento k-médias é uma abordagem para agrupar pontos de dados em um processo que inicialmente se concentra na representação macro do conjunto de dados, onde são aplicados centroides de cluster criados aleatoriamente. Com o tempo, esses centroides são ajustados e escalonados para representar melhor o conjunto de dados. Este artigo examina essa abordagem de agrupamento e algumas de suas aplicações.
Simulação de mercado: Position View (III)
Nestes últimos artigos, tenho mencionado o fato de que precisamos em alguns momentos definir um valor para a propriedade ZOrder. Mas por que?!?! Já que muitos dos códigos, que adicionam objetos no gráfico, simplesmente não utilizam, ou melhor, não definem um valor para tal propriedade. Bem, não estou aqui, para dizer, o que cada programador, deve ou não fazer. Como ele deve ou não criar seus códigos. Estou aqui, a fim de mostrar, a você caro leitor, e interessado em realmente compreender como as coisas funcionam, por debaixo dos panos.
Análise causal de séries temporais usando entropia de transferência
Neste artigo, discutimos como a causalidade estatística pode ser aplicada para identificar variáveis preditivas. Exploraremos a relação entre causalidade e entropia de transferência, além de apresentar um código MQL5 para detectar transferências direcionais de informação entre duas variáveis.
Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5
Neste artigo, exploramos diferentes maneiras pelas quais os eigenvetores e os autovalores podem ser aplicados na análise exploratória de dados para revelar relacionamentos únicos nos dados.
Ciclos e Forex
Os ciclos têm grande importância em nossas vidas. Dia e noite, estações do ano, dias da semana e muitos outros ciclos de naturezas diferentes fazem parte do cotidiano de qualquer pessoa. Neste artigo, tentaremos examinar os ciclos nos mercados financeiros.
Processos não estacionários e regressão espúria
O objetivo do artigo é demonstrar a ocorrência de falsa regressão quando se aplica a análise de regressão a processos não estacionários, utilizando simulação pelo método de Monte Carlo.
Algoritmos de otimização populacionais: enxame de pássaros (Bird Swarm Algorithm, BSA)
O artigo explora o BSA, um algoritmo baseado no comportamento das aves, inspirado na interação coletiva das aves em bando na natureza. Diferentes estratégias de busca dos indivíduos no BSA, incluindo a alternância entre comportamento de voo, vigilância e procura de alimento, tornam esse algoritmo multifacetado. Ele utiliza os princípios de comportamento de bando, comunicação, adaptabilidade, liderança e acompanhamento das aves para a busca eficaz de soluções ótimas.
Busca de padrões arbitrários em pares de moedas no Python com o uso do MetaTrader 5
Existem padrões repetitivos e regularidades no mercado cambial? Decidi criar meu próprio sistema de análise de padrões usando Python e MetaTrader 5. Uma espécie de simbiose entre matemática e programação para conquistar o Forex.
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II
Neste artigo, vamos considerar o algoritmo genético binário (BGA), que modela os processos naturais que ocorrem no material genético dos seres vivos na natureza.
Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)
Este artigo discute um algoritmo da família MEC, denominado algoritmo simples de evolução da mente (Simple MEC, SMEC). O algoritmo se destaca pela beleza da ideia subjacente e pela simplicidade de implementação.