Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Redes neurais de maneira fácil (Parte 19): Regras de associação usando MQL5

Continuamos o tópico de busca de regras de associação. No artigo anterior, consideramos os aspectos teóricos desse tipo de problema. No artigo de hoje, ensinarei a implementação do método FP-Growth usando MQL5. Também vamos testá-la com dados reais.
preview
Desenvolvendo um sistema de Replay (Parte 40): Iniciando a segunda fase (I)

Desenvolvendo um sistema de Replay (Parte 40): Iniciando a segunda fase (I)

Esta é a nova fase do sistema de replay / simulação. Nesta fase a conversa de fato irá ser seria. E o conteúdo irá ser tornar bastante denso. Peço que você leia com calma o artigo e sempre procure usar as referencias que possivelmente estarão sendo indicadas nos artigos. Isto para lhe ajudar a compreender melhor o que estará sendo explicado.
preview
Simulação de mercado (Parte 13): Sockets (VII)

Simulação de mercado (Parte 13): Sockets (VII)

Quando você desenvolve algo, seja no xlwings, ou qualquer outro pacote que nos permita ler e escrever diretamente no Excel. Você na verdade deve notar que todos os programas, funções ou procedimentos. Executam e logo finalizam a sua tarefa. Eles não ficam ali, dentro de um loop. E por mais que você tente fazer as coisas de uma forma diferente.
preview
Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

Algoritmos de otimização populacionais: Otimização de ervas invasivas (IWO)

A surpreendente capacidade das plantas daninhas de sobreviver em uma ampla variedade de condições foi a inspiração para o desenvolvimento de um poderoso algoritmo de otimização. O IWO (Invasive Weed Optimization) é considerado um dos melhores entre os analisados até o momento.
preview
Implementando um algoritmo de treinamento ARIMA em MQL5

Implementando um algoritmo de treinamento ARIMA em MQL5

Neste artigo, implementaremos um algoritmo que aplica o modelo integrado de autorregressão com média móvel (modelo Box-Jenkins) usando o método de minimização de função de Powell. Box e Jenkins afirmaram que a maioria das séries temporais pode ser modelada usando uma ou ambas das duas estruturas.
preview
Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures

Python, ONNX e MetaTrader 5: Montando um modelo RandomForest com pré-processamento de dados via RobustScaler e PolynomialFeatures

Neste artigo, vamos desenvolver um modelo de floresta aleatória usando Python. Vamos treinar esse modelo e salvá-lo como um pipeline ONNX, já incluindo etapas de pré-processamento de dados. Depois, esse modelo será aplicado diretamente no terminal do MetaTrader 5.
preview
Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)

Algoritmos de otimização populacionais: algoritmo de gotas de água inteligentes (Intelligent Water Drops, IWD)

Neste artigo é analisado um algoritmo interessante chamado de gotas de água inteligentes (IWD), inspirado na natureza inanimada, que simula o processo de formação do leito de um rio. As ideias desse algoritmo permitiram melhorar significativamente o líder anterior da classificação, o SDS, e o novo líder (SDSm modificado), como de costume, pode ser encontrado no arquivo do artigo.
preview
Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Teoria das Categorias em MQL5 (Parte 23): uma nova perspectiva sobre a média móvel exponencial dupla

Neste artigo, continuamos a explorar indicadores de negociação populares sob uma nova ótica. Vamos processar a composição horizontal de transformações naturais. O melhor indicador para isso é a média móvel exponencial dupla (Double Exponential Moving Average, DEMA).
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 17): Tiquete e mais tiquetes (I)

Aqui vamos começar a ver como implementar algo realmente bem interessante e curioso. Mas ao mesmo tempo extremamente complicado por conta de algumas questões que muitos confundem. Mas pior do que as confundir, é o fato de que alguns operadores que se dizem profissionais, não fazem ideia a importância de tais conceitos no mercado de capital. Sim, apesar do foco aqui ser programação, entender algumas questões que envolvem operações em mercados, é de extrema valia para o que iremos começar a implementar aqui.
preview
Teoria das Categorias (Parte 9): Ações dos monoides

Teoria das Categorias (Parte 9): Ações dos monoides

Esse artigo é a continuação da série sobre a implementação da teoria das categorias em MQL5. Nele são discutidas as ações de monoides como um meio de transformar os monoides descritos no artigo anterior para aumentar suas aplicações.
preview
Data Science e Machine Learning (Parte 21): Desvendando Redes Neurais, Algoritmos de Otimização Desmistificados

Data Science e Machine Learning (Parte 21): Desvendando Redes Neurais, Algoritmos de Otimização Desmistificados

Mergulhe no coração das redes neurais enquanto desmistificamos os algoritmos de otimização usados dentro das redes neurais. Neste artigo, descubra as principais técnicas que desbloqueiam todo o potencial das redes neurais, impulsionando seus modelos a novos patamares de precisão e eficiência.
preview
Avaliando o desempenho futuro com intervalos de confiança

Avaliando o desempenho futuro com intervalos de confiança

Neste artigo, vamos explorar o uso do bootstrapping como um meio de avaliar a eficácia futura de uma estratégia automatizada.
preview
Desenvolvendo um sistema de Replay (Parte 45): Projeto do Chart Trade (IV)

Desenvolvendo um sistema de Replay (Parte 45): Projeto do Chart Trade (IV)

O principal neste artigo, é justamente a apresentação e explicação da classe C_ChartFloatingRAD. Temos o indicador Chart Trade, funcionando de uma maneira bastante interessante. No entanto, se você notará que ainda temos um numero bastante reduzido de objetos no gráfico. E mesmo assim temos exatamente o comportamento esperado. Podendo editar os valores presentes no indicador. A pergunta é: Como isto é possível ?!?! Neste artigo você começará a entender isto.
preview
Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo

Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.
preview
Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento

Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento

No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.
preview
Desenvolvendo um sistema de Replay (Parte 26): Projeto Expert Advisor — Classe C_Terminal

Desenvolvendo um sistema de Replay (Parte 26): Projeto Expert Advisor — Classe C_Terminal

Talvez já podemos começar a desenvolver um Expert Advisor a ser utilizado no replay / simulação. Mas não iremos criar qualquer coisa, este precisará ser algo um pouco mais bem elaborado. Mas não nos deixemos nos levar pelo grau de dificuldade neste primeiro momento. Temos de começar a fazer as coisas partindo de algum ponto. Caso contrário apenas iremos nos conformar, imaginando o qual difícil o desafio é, sem ao menos tentarmos de fato superar este obstáculo. Vida de programador de fato é isto: Encontrar um obstáculo e tentar superar ele, via estudo, testes e bastante pesquisa.
preview
Validação cruzada e noções básicas de inferência causal em modelos CatBoost, exportação para o formato ONNX

Validação cruzada e noções básicas de inferência causal em modelos CatBoost, exportação para o formato ONNX

Este artigo propõe um método autoral para a criação de robôs usando aprendizado de máquina.
preview
Algoritmo de Busca Orbital Atômica — Atomic Orbital Search (AOS)

Algoritmo de Busca Orbital Atômica — Atomic Orbital Search (AOS)

O artigo aborda o algoritmo AOS (Atomic Orbital Search), que utiliza conceitos do modelo orbital atômico para simular a busca por soluções. O algoritmo se baseia em distribuições probabilísticas e na dinâmica das interações dentro de um átomo. O artigo discute detalhadamente os aspectos matemáticos do AOS, incluindo a atualização das posições dos candidatos a soluções e os mecanismos de absorção e emissão de energia. O AOS abre novos caminhos para a aplicação de princípios quânticos em tarefas computacionais, oferecendo uma abordagem inovadora para a otimização.
preview
Teoria das Categorias em MQL5 (Parte 13): Eventos de calendário com esquemas de banco de dados

Teoria das Categorias em MQL5 (Parte 13): Eventos de calendário com esquemas de banco de dados

Neste artigo, discutimos como os esquemas de banco de dados podem ser incorporados para categorização em MQL5. Analisaremos brevemente como os conceitos de esquema de banco de dados podem ser combinados com a teoria da categoria na identificação de informações de texto (string) relevantes para a negociação. O foco será em eventos de calendário.
preview
Visualizações de negociações no gráfico (Parte 2): Desenho gráfico de informações

Visualizações de negociações no gráfico (Parte 2): Desenho gráfico de informações

Escreveremos do zero um script para facilitar a captura de capturas de tela (print-screens) de negociações, visando a análise de entradas. Em um único gráfico, será conveniente exibir todas as informações necessárias sobre uma negociação específica, com a possibilidade de desenhar diferentes timeframes.
preview
Permutação das barras de preços no MQL5

Permutação das barras de preços no MQL5

Neste artigo, apresentamos um algoritmo de permutação das barras de preços e detalhamos como os testes de permutação podem ser usados para identificar casos em que o desempenho de uma estratégia é inventado com o objetivo de enganar potenciais compradores de Expert Advisors.
preview
Desenvolvendo um sistema de Replay (Parte 71): Acertando o tempo (IV)

Desenvolvendo um sistema de Replay (Parte 71): Acertando o tempo (IV)

Aqui neste artigo, mostrarei como implementar o que foi visto no artigo passado, dentro do serviço de replay/simulação. Mas como tudo nesta vida, costuma dar algum tipo de problema. Aqui não foi uma exceção. Então acompanhe o artigo e veja o que será tema para o próximo artigo desta serie. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

Ciência de Dados e ML (Parte 27): Redes Neurais Convolucionais (CNNs) em Bots de Trading no MetaTrader 5 — Vale a Pena?

As Redes Neurais Convolucionais (CNNs) são renomadas por sua capacidade de detectar padrões em imagens e vídeos, com aplicações em diversos campos. Neste artigo, exploramos o potencial das CNNs para identificar padrões valiosos nos mercados financeiros e gerar sinais de trading eficazes para bots de negociação no MetaTrader 5. Vamos descobrir como essa técnica de aprendizado profundo pode ser aproveitada para decisões de trading mais inteligentes.
preview
Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Redes neurais de maneira fácil (Parte 25): Exercícios práticos de transferência de aprendizado

Nos dois últimos artigos, criamos uma ferramenta que permite criar e editar modelos de redes neurais. E agora é hora de avaliar o uso potencial da transferência de aprendizado (transfer learning, em inglês) usando exemplos práticos.
preview
Desenvolvendo um sistema de Replay (Parte 39): Pavimentando o Terreno (III)

Desenvolvendo um sistema de Replay (Parte 39): Pavimentando o Terreno (III)

Antes de começarmos a segunda fase de desenvolvimento, é preciso reforçar algumas ideias. Então você sabe como forçar o MQL5 a fazer o que é preciso ser feito ?!?! Já tentou ir além do que a documentação informar ?!?! Se não. Se prepare. Pois irei começar a fazer coisas muito além do que grande parte faz normalmente.
preview
Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)

Algoritmos de otimização populacionais: Algoritmo semelhante ao eletromagnetismo (EM)

O artigo descreve os princípios, os métodos e as possibilidades de aplicação do EM a diferentes problemas de otimização. Ele uma ferramenta de otimização eficiente, capaz de lidar com grandes quantidades de dados e funções multidimensionais.
preview
Negociação algorítmica baseada em padrões de reversão 3D

Negociação algorítmica baseada em padrões de reversão 3D

Estamos abrindo um novo mundo de trading automatizado em barras 3D. Como seria um robô de trading operando em barras multidimensionais de preço, e será que os clusters “amarelos” das barras 3D conseguem prever reversões de tendência? Como é o trading em múltiplas dimensões?
preview
Indicador de avaliação da força e da fraqueza dos pares de moedas em MQL5 puro

Indicador de avaliação da força e da fraqueza dos pares de moedas em MQL5 puro

Estamos criando um indicador profissional para análise da força das moedas em MQL5. Neste guia passo a passo, você aprenderá a desenvolver uma poderosa ferramenta de trading com painel visual para o MetaTrader 5, a calcular a força das moedas em múltiplos timeframes (H1, H4 e D1), a implementar a atualização dinâmica de dados e a criar uma interface amigável para o usuário.
preview
Desenvolvendo um sistema de Replay (Parte 56): Adequando os Módulos

Desenvolvendo um sistema de Replay (Parte 56): Adequando os Módulos

Apesar dos módulos estarem se comunicando de maneira adequada, existe uma falha quando é tentado usar o indicador de mouse no serviço de replay. Precisamos corrigir isto agora, antes de dar o próximo passo. Além disto, havia uma falha que finalmente foi devidamente corrigida no código do indicador de mouse. Então esta versão finalmente se tornou estável, e devidamente finalizada.
preview
Simulação de mercado (Parte 18): Iniciando o SQL (I)

Simulação de mercado (Parte 18): Iniciando o SQL (I)

Não importa se vamos usar um ou outro programa de SQL. Seja MySQL, SQL Server, SQLite, OpenSQL ou qualquer outro. Todos tem algo em comum entre si. Este algo em comum é a linguagem SQL. Pois bem, mesmo que você não venha a usar de fato uma Workbench, poderá fazer manipulações ou trabalhar com um banco de dados diretamente no MetaEditor ou via MQL5. Isto pensando em fazer as coisas no MetaTrader 5. Mas para de fato conseguir fazer as coisas assim, você precisará de algum conhecimento sobre SQL. Então aqui vamos aprender pelo menos o básico.
preview
Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)

Algoritmos de otimização populacionais: algoritmo de otimização de forrageamento bacteriano (BFO)

A base da estratégia de forrageamento de E. coli (E. coli) inspirou cientistas a desenvolverem o algoritmo de otimização BFO. Esse algoritmo apresenta ideias originais e abordagens promissoras para otimização e merece um estudo mais aprofundado.
preview
Desenvolvendo um sistema de Replay (Parte 34): Sistema de Ordens (III)

Desenvolvendo um sistema de Replay (Parte 34): Sistema de Ordens (III)

Vamos neste artigo concluir a primeira fase da construção. Será algo relativamente rápido, mas explicarei detalhes que podem não ter sido comentados no passado. Mas ainda assim aqui explicarei algumas coisas que muitos não entender por que são como são. Um destes casos é o Mouse. Você sabe o motivo de ter que pressionar a tecla Shift ou Ctrl no teclado ?!?!
preview
Ciência de dados e aprendizado de máquina (Parte 17): O dinheiro cresce em árvores? Florestas aleatórias no trading de forex

Ciência de dados e aprendizado de máquina (Parte 17): O dinheiro cresce em árvores? Florestas aleatórias no trading de forex

Neste artigo, vamos desvendar os segredos da alquimia algorítmica, explorando a arte e precisão dos mercados financeiros. Você vai ver como as florestas aleatórias transformam dados em previsões e ajudam a navegar nas complexidades do mercado financeiro. Vamos entender o papel das florestas aleatórias com dados financeiros e ver se elas podem ajudar a aumentar os lucros.
preview
Ferramentas econométricas para previsão de volatilidade: Modelo GARCH

Ferramentas econométricas para previsão de volatilidade: Modelo GARCH

O artigo descreve as propriedades do modelo não linear de heterocedasticidade condicional (GARCH). O indicador iGARCH para prever a volatilidade um passo à frente é construído com base nele. A biblioteca de análise numérica ALGLIB é usada para estimar os parâmetros do modelo.
preview
Desenvolvendo um sistema de Replay (Parte 47): Projeto do Chart Trade (VI)

Desenvolvendo um sistema de Replay (Parte 47): Projeto do Chart Trade (VI)

Finalmente o Indicador Chart Trade passa a se comunicar com algum Expert Advisor, podendo lançar as informações de modo interativo. Então neste artigo iremos finalizar, o indicador Chart Trade, o tornando funcional a ponto de podermos usá-lo em conjunto com algum Expert Advisor. O que iremos fazer, irá nos permitir, acessar e trabalhar com o indicador, como se ele estivesse de fato ligado ao Expert Advisor. Mas vamos fazer isto de uma maneira, bem mais interessante do que foi feito lá no passado.
preview
Desenvolvendo um sistema de Replay (Parte 59): Um novo futuro

Desenvolvendo um sistema de Replay (Parte 59): Um novo futuro

O correto entendimento das coisas, nos permite fazer mais e com menos esforço. Neste artigo irei explicar por que temos que temporizar a colocação do template, antes do serviço realmente começar a mexer no gráfico. Além disto, que tal melhorar o indicador de mouse, para podermos fazer mais coisas com ele.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 04): Análise discriminante linear

O trader moderno está quase sempre à procura de novas ideias. Para isso, tenta novas estratégias, modifica e descarta aquelas que não funcionam. Nesta série de artigos, tentarei provar que o assistente MQL5 é a verdadeira espinha dorsal de um trader moderno.
preview
Teoria das Categorias em MQL5 (Parte 11): Grafos

Teoria das Categorias em MQL5 (Parte 11): Grafos

Esse artigo é uma continuação da série sobre como implementar a teoria das categorias no MQL5. Aqui consideramos como a teoria dos grafos pode ser integrada com monoides e outras estruturas de dados ao desenvolver uma estratégia para fechar um sistema de negociação.
preview
Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

Ciência de Dados e ML (Parte 26): A Batalha Definitiva em Previsão de Séries Temporais — Redes Neurais LSTM vs GRU

No artigo anterior, discutimos uma RNN simples que, apesar de sua incapacidade de entender dependências de longo prazo nos dados, conseguiu desenvolver uma estratégia lucrativa. Neste artigo, discutiremos tanto a Memória de Longo e Curto Prazo (LSTM) quanto a Unidade Recorrente com Portões (GRU). Essas duas redes foram introduzidas para superar as limitações de uma RNN simples e superá-la.
preview
Simulação de mercado: Position View (I)

Simulação de mercado: Position View (I)

O conteúdo, que veremos a partir de agora, é muito mais complicado em termos de teorias e conceitos. Tentarei deixar o conteúdo o mais simples quanto for possível fazer. A parte referente a programação em si. É até bastante simples e direta. Mas se você não compreender toda a teórica, que está debaixo dos panos. Ficará completamente sem meios para poder melhorar, ou mesmo adaptar o sistema de replay/simulador. A algo diferente do que irei mostrar. Meu intuito não é que você simplesmente compile e use o código que estou mostrando. Quero que você aprenda, entenda e se possível, possa criar algo ainda melhor.