
Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)
Este artigo apresenta um experimento único que visa examinar o comportamento dos algoritmos de otimização populacional no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade populacional é baixa e alcançar máximos globais. Trabalhar nessa direção fornecerá uma visão mais aprofundada sobre quais algoritmos específicos podem continuar sua busca com sucesso usando coordenadas definidas pelo usuário como ponto de partida e quais fatores influenciam seu sucesso.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes
Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.

Negociação com spreads no mercado Forex usando o fator de sazonalidade
Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.

Simulação de mercado: Iniciando o SQL no MQL5 (I)
Neste artigo, começaremos a explorar o uso do SQL dentro de um código MQL5. Vemos como podemos cria um banco de dados. Ou melhor dizendo, como podemos criar um arquivo de banco de dados em SQLite, usando para isto dispositivos ou procedimentos contidos dentro da linguagem MQL5. Veremos também, como criar uma tabela e depois como criar uma relação entre tabelas via chave primária e chave estrangeira. Isto tudo, usando novamente o MQL5. Veremos como é simples tornar um código que poderá no futuro ser portado para outras implementações do SQL, usando uma classe para nos ajudar a ocultar a implementação que está sendo criada. E o mais importante de tudo. Veremos que em diversos momentos, podemos correr o risco de fazer algo não dar certo ao usarmos SQL. Isto devido ao fato de que dentro do código MQL5, um código SQL irá ser sempre colocado como sendo uma STRING.

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5
Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.

Desenvolvendo um sistema de Replay (Parte 76): Um novo Chart Trade (III)
Neste artigo vamos compreender como o código faltante no artigo anterior, DispatchMessage, funciona. Aqui será feita a introdução do que será visto no próximo artigo. Sendo assim é importante compreender o funcionamento deste procedimento antes de ver o próximo artigo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Simulação de mercado (Parte 08): Sockets (II)
Que tal criar algo prático usando soquetes? Bem, neste artigo, vamos iniciar a criação de um mini chat. Acompanhe como isto será feito, pois será algo bastante interessante. Lembre-se que o que será mostrado aqui tem como objetivo ser um código puramente didático. Você de fato não deve usar este código de forma comercial ou em uma aplicação finalizada. Pois o mesmo não conta com nenhum tipo de segurança no transporte dos dados. Sendo possível ver o conteúdo do que está sendo transportado pelo soquete.

O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5
Neste artigo, descrevemos a implementação do Algoritmo Iterativo Multicamadas do Método de Agrupamento para Manipulação de Dados em MQL5.

Métodos de otimização da biblioteca ALGLIB (Parte I)
Neste artigo, vamos conhecer os métodos de otimização da biblioteca ALGLIB para MQL5. O artigo inclui exemplos simples e visuais de aplicação da ALGLIB para resolver tarefas de otimização, o que tornará o processo de aprendizado dos métodos o mais acessível possível. Analisaremos detalhadamente a integração de algoritmos como BLEIC, L-BFGS e NS, e com base neles resolveremos uma tarefa de teste simples.

Algoritmo do buraco negro — Black Hole Algorithm (BHA)
O algoritmo do buraco negro (Black Hole Algorithm, BHA) utiliza os princípios da gravidade dos buracos negros para otimizar soluções. Neste artigo, vamos explorar como o BHA atrai as melhores soluções, evitando mínimos locais, e por que esse algoritmo se tornou uma ferramenta poderosa para resolver problemas complexos. Descubra como ideias simples podem gerar resultados impressionantes no mundo da otimização.

Simulação de mercado (Parte 20): Iniciando o SQL (III)
Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.

Treinamento de perceptron multicamadas com o algoritmo de Levenberg-Marquardt
Este artigo apresenta a implementação do algoritmo de Levenberg-Marquardt para o treinamento de redes neurais com propagação para frente. Foi feita uma análise comparativa de desempenho com os algoritmos da biblioteca scikit-learn do Python. Primeiramente, são discutidos métodos de treinamento mais simples, como a descida do gradiente, a descida do gradiente com momentum e a descida do gradiente estocástica.

Colmeia artificial de abelhas (ABHA): Testes e resultados
Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas
As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.

As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)
Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.

Reconhecimento de Padrões Usando Dynamic Time Warping em MQL5
Neste artigo, discutimos o conceito de dynamic time warping como uma forma de identificar padrões preditivos em séries temporais financeiras. Veremos como ele funciona e também apresentaremos sua implementação em MQL5 puro.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios
Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.

Classe base de algoritmos populacionais como alicerce para otimização eficiente
Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.

Computação quântica e trading: Um novo olhar sobre as previsões de preços
Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana
A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (Conclusão)
No artigo anterior, exploramos o framework adaptativo multiagente MASAAT, que utiliza um conjunto de agentes para realizar análise cruzada de séries temporais multimodais em diferentes escalas de representação dos dados. Hoje, concluiremos o trabalho iniciado anteriormente, implementando as abordagens desse framework utilizando MQL5.

Simulação de mercado (Parte 17): Sockets (XI)
Implementar a parte que será executada aqui no MetaTrader 5, está longe de ser complicado. Mas existem diversos cuidados e pontos de atenção a serem observados. Isto para que você caro leitor, consiga de fato fazer com que o sistema funcione. Lembre-se de uma coisa: Você não executará um único programa. Você estará na verdade, executando três programas ao mesmo tempo. E é importante que cada um seja implementado e construído de forma que trabalhem e conversem entre si. Isto sem que eles fiquem completamente sem saber o que cada um está querendo ou desejando fazer.

Algoritmo do Big Bang e do Grande Colapso — BBBC (Big Bang - Big Crunch)
Este artigo apresenta o método Big Bang - Big Crunch, que possui duas fases principais: a criação cíclica de pontos aleatórios e sua compressão em direção à solução ótima. Essa abordagem combina diversificação e intensificação, permitindo encontrar gradualmente soluções melhores e abrindo novas possibilidades na área de otimização.

Analisamos o código binário dos preços no mercado (Parte I): Um novo olhar sobre a análise técnica
Este artigo apresenta uma abordagem inovadora para a análise técnica, baseada na conversão dos movimentos de preço em código binário. O autor mostra como diferentes aspectos do comportamento do mercado - desde movimentos simples de preço até padrões complexos - podem ser codificados em sequências de zeros e uns.

Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.

Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)
Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.

Exemplo de Otimização Estocástica e Controle Ótimo
Este Expert Advisor, chamado SMOC (provavelmente abreviação de Stochastic Model Optimal Control), é um exemplo simples de um sistema de negociação algorítmica avançado para o MetaTrader 5. Ele utiliza uma combinação de indicadores técnicos, controle preditivo baseado em modelos e gerenciamento dinâmico de risco para tomar decisões de negociação. O EA incorpora parâmetros adaptativos, dimensionamento de posição baseado em volatilidade e análise de tendências para otimizar seu desempenho em diferentes condições de mercado.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 10): RBM não convencional
As máquinas de Boltzmann restritas (Restrictive Boltzmann Machines, RBM) são, em um nível básico, uma rede neural de duas camadas capaz de realizar classificação não supervisionada através da redução de dimensionalidade. Vamos usar seus princípios básicos e ver o que acontece se a desenharmos e a treinarmos de forma não convencional. Será que conseguiremos obter um filtro de sinais útil?

O Método de Agrupamento de Manipulação de Dados: Implementando o Algoritmo Combinatório em MQL5
Neste artigo, continuamos nossa exploração da família de algoritmos do Método de Agrupamento de Manipulação de Dados, com a implementação do Algoritmo Combinatório, juntamente com sua versão refinada, o Algoritmo Combinatório Seletivo em MQL5.

Métodos de otimização da biblioteca Alglib (Parte II)
Neste artigo, continuaremos a análise dos métodos de otimização restantes da biblioteca ALGLIB, com foco especial em seus testes em funções complexas e multidimensionais. Isso nos permitirá não apenas avaliar a eficiência de cada algoritmo, mas também identificar seus pontos fortes e fracos em diferentes condições.

Construção de previsões econômicas: potencialidades do Python
Como utilizar os dados econômicos do Banco Mundial para fazer previsões? O que acontece se combinarmos modelos de IA com economia?

Métodos de discretização dos movimentos de preço em Python
Vamos explorar métodos de discretização de preços com Python + MQL5. Neste artigo, compartilho minha experiência prática no desenvolvimento de uma biblioteca em Python que implementa uma variedade de abordagens para formar barras, desde as clássicas Volume e Range bars até métodos mais exóticos como Renko e Kagi. Barras, candles de três linhas rompidas, range bars — qual é a sua estatística? De que outras formas podemos representar os preços de maneira discreta?

Aplicação de regras associativas para análise de dados no Forex
Como aplicar as regras preditivas de análise de dados do varejo de supermercados ao mercado real de Forex? Como as compras de biscoitos, leite e pão estão relacionadas às transações na bolsa? Este artigo explora uma abordagem inovadora para o trading algorítmico, baseada no uso de regras associativas.

Simulação de mercado: Iniciando o SQL no MQL5 (IV)
Muitos costuma subutilizar o SQL, ou mesmo não fazer uso dele, devido a uma má compreensão de como ele realmente funciona. Quando pesquisamos dentro de um banco de dados SQL. Não queremos necessariamente saber de uma resposta genérica. Podemos em alguns casos, estar buscando uma resposta bastante objetiva e prática. Se você criar um banco de dados, com uma certa estruturação e modelagem. Poderá colocar, virtualmente qualquer tipo de informação dentro do banco de dados.

Algoritmo de otimização baseado em ecossistema artificial — Artificial Ecosystem-based Optimization (AEO)
O artigo aborda o algoritmo metaheurístico AEO, que modela as interações entre os componentes de um ecossistema, criando uma população inicial de soluções e aplicando estratégias adaptativas de atualização, e descreve detalhadamente as etapas do funcionamento do AEO, incluindo as fases de consumo e decomposição, bem como as diferentes estratégias de comportamento dos agentes. O artigo apresenta as características e vantagens do AEO.

Simulação de mercado: Position View (II)
Neste artigo, mostrarei de maneira o mais simples e prática possível. Como você poderá usar um indicador como sendo uma forma de observar posições que estejam abertas. Isto junto ao servidor de negociação. Estou fazendo isto, desta forma e ao poucos, justamente para mostrar, que você não precisa necessariamente, colocar tais coisas em um Expert Advisor. Muitos de vocês, já devem estar bastante acostumados em fazer isto. Seja por um motivo, seja por outro qualquer. Mas a verdade é que isto é pura bobagem, já que conforme formos avançando nesta implementação, ficará claro, que você poderá criar, ou implementar diversos tipos diferentes de indicadores, para tão propósito.

Algoritmo de comportamento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Evolução em duas fases
Este artigo dá continuidade ao tema do comportamento social dos organismos vivos e ao seu impacto no desenvolvimento de um novo modelo matemático, o ASBO (Adaptive Social Behavior Optimization). Exploraremos a evolução em duas fases, realizaremos testes no algoritmo e apresentaremos as conclusões. Assim como na natureza, onde grupos de organismos vivos se unem para sobreviver, o ASBO utiliza princípios de comportamento coletivo para resolver problemas complexos de otimização.

Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)
Apresentamos um algoritmo de trading inovador que combina algoritmos evolutivos com aprendizado profundo por reforço para operar no mercado Forex. O algoritmo utiliza um mecanismo de extinção das estratégias ineficientes, com o objetivo de otimizar a estratégia de negociação.

Técnicas do MQL5 Wizard que você precisa conhecer (Parte 36): Q-Learning com Cadeias de Markov
Aprendizado por Reforço é um dos três pilares principais do aprendizado de máquina, ao lado do aprendizado supervisionado e do aprendizado não supervisionado. Portanto, ele está relacionado ao controle ótimo, ou seja, aprender a melhor política de longo prazo que melhor se adeque à função objetivo. É nesse contexto que exploramos seu possível papel no processo de aprendizado de uma MLP (rede neural de múltiplas camadas) de um Expert Advisor montado pelo assistente do MQL5 Wizard.