Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço

Engenharia de Recursos com Python e MQL5 (Parte II): Ângulo de Preço

Existem muitas postagens no Fórum MQL5 pedindo ajuda para calcular a inclinação das mudanças de preço. Este artigo demonstrará uma forma possível de calcular o ângulo formado pelas variações de preço em qualquer mercado que você deseje negociar. Além disso, responderemos se desenvolver esse novo recurso vale o esforço e o tempo adicionais investidos. Vamos explorar se a inclinação do preço pode melhorar a precisão de algum dos nossos modelos de IA ao prever o par USDZAR no M1.
preview
Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

Técnicas do MQL5 Wizard que você deve conhecer (14): Previsão de Séries Temporais Multiobjetivo com STF

A Fusão Espaço-Temporal, que utiliza métricas de 'espaço' e tempo na modelagem de dados, é principalmente útil em sensoriamento remoto e uma série de outras atividades baseadas em imagens, permitindo uma melhor compreensão do nosso ambiente. Graças a um artigo publicado, adotamos uma abordagem inovadora ao usá-la, examinando seu potencial para traders.
preview
Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos

Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

À medida que avançamos, utilizamos cada vez mais instâncias simultâneas de estratégias de negociação em um único EA. Vamos descobrir até quantas instâncias podemos utilizar antes de nos depararmos com limitações de recursos.
preview
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados

Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados

Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.
preview
Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Neste artigo, consideraremos o princípio de construção de algoritmos multipopulacionais e, como exemplo desse tipo de algoritmos, analisaremos a Evolução de Grupos Sociais (ESG), um novo algoritmo autoral. Analisaremos os conceitos principais, os mecanismos de interação entre populações e as vantagens desse algoritmo, bem como examinaremos seu desempenho em tarefas de otimização.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 37): Regressão por Processo Gaussiano com Núcleos Lineares e de Matérn

Técnicas do MQL5 Wizard que você deve conhecer (Parte 37): Regressão por Processo Gaussiano com Núcleos Lineares e de Matérn

Os núcleos lineares são a matriz mais simples de seu tipo usada em aprendizado de máquina para regressão linear e máquinas de vetor de suporte. O núcleo de Matérn, por outro lado, é uma versão mais versátil da Função de Base Radial que analisamos em um artigo anterior, e é hábil em mapear funções que não são tão suaves quanto o RBF pressupõe. Construímos uma classe de sinal personalizada que utiliza ambos os núcleos para prever condições de compra e venda.
preview
Computação quântica e trading: Um novo olhar sobre as previsões de preços

Computação quântica e trading: Um novo olhar sobre as previsões de preços

Este artigo analisa uma abordagem inovadora para prever os movimentos de preços nos mercados financeiros mediante computação quântica. O foco principal está na aplicação do algoritmo de estimativa de fase quântica (QPE) para buscar precursores de padrões de preços, o que permite acelerar significativamente o processo de análise de dados de mercado.
preview
Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Desenvolvendo um sistema de Replay (Parte 57): Dissecando o serviço de testagem

Neste artigo iremos dissecar o serviço de teste que foi visto no artigo anterior. Mas por conta que lá já havia muita informação, e não queria complicar a coisa toda com mais informações. Vamos fazer isto neste artigo daqui. Então se você não tem ideia de como o serviço que foi visto no artigo anterior, permitia que as coisas funcionassem daquela forma. Venha comigo neste artigo para compreender o que será base para os próximos artigos.
preview
Filtragem e extração de características no domínio da frequência

Filtragem e extração de características no domínio da frequência

Neste artigo, vamos explorar a aplicação de filtros digitais em séries temporais representadas no domínio da frequência, com o objetivo de extrair características únicas que podem ser úteis para modelos de previsão.
preview
EA baseado em um aproximador universal MLP

EA baseado em um aproximador universal MLP

Este artigo apresenta uma forma simples e acessível de usar uma rede neural em um EA, que não exige conhecimento aprofundado em aprendizado de máquina. O método elimina a necessidade de normalizar a função alvo e evita problemas como “explosão de pesos” e “paralisação da rede”, oferecendo um aprendizado intuitivo com controle visual dos resultados.
preview
Análise de todas as variantes do movimento do preço em um computador quântico da IBM

Análise de todas as variantes do movimento do preço em um computador quântico da IBM

Usamos o computador quântico da IBM para abrir todos os cenários possíveis de movimento do preço. Parece ficção científica? Bem-vindo ao mundo dos cálculos quânticos aplicados ao trading!
preview
Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Este artigo apresenta uma nova abordagem para resolver problemas de otimização, combinando as ideias dos algoritmos de otimização de forrageamento bacteriano (BFO) com as técnicas usadas no algoritmo genético (GA), resultando no algoritmo híbrido BFO-GA. Ele utiliza o comportamento de enxameamento das bactérias para a busca global da solução ótima e operadores genéticos para refinar os ótimos locais. Ao contrário do BFO original, as bactérias agora podem mutar e herdar genes.
preview
Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)

Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)

Com este artigo investigaremos como a mudança de forma das distribuições de probabilidade afetam o desempenho dos algoritmos de otimização. Realizaremos experimentos baseados no algoritmo de teste "cabeçudinho inteligente" (Smart Cephalopod, SC) para avaliar o desempenho de diferentes distribuições de probabilidade no contexto de tarefas de otimização.
preview
Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU

Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.
preview
Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas

Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas

Modelos de aprendizado de máquina vêm com vários parâmetros ajustáveis. Nesta série de artigos, exploraremos como personalizar seus modelos de IA para se ajustar ao seu mercado específico utilizando a biblioteca SciPy.
preview
Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Neste artigo, analisamos em detalhes os aspectos importantes para a escolha dos dados mais relevantes e de qualidade do mercado Forex e para melhorar o desempenho dos modelos de inteligência artificial.
preview
Simulação de mercado (Parte 09): Sockets (III)

Simulação de mercado (Parte 09): Sockets (III)

Este artigo é continuação do artigo anterior. Aqui vamos ver como o Expert Advisor será implementado. Mas principalmente como deverá ser feito o código do servidor. Isto por que, o código que foi visto no artigo anterior não é o suficiente para que possamos de fato fazer com que as coisas funcionem como deverão. Então é necessário que você veja ambos artigos para compreender mais profundamente o que estará acontecendo.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

Ciência de Dados e Aprendizado de Máquina (Parte 19): Supercharge Seus Modelos de IA com AdaBoost

AdaBoost, um poderoso algoritmo de boosting projetado para elevar o desempenho dos seus modelos de IA. AdaBoost, abreviação de Adaptive Boosting, é uma técnica sofisticada de aprendizado em conjunto que integra perfeitamente aprendizes fracos, aprimorando sua força preditiva coletiva.
preview
Desenvolvendo um sistema de Replay (Parte 52): Complicando as coisas (IV)

Desenvolvendo um sistema de Replay (Parte 52): Complicando as coisas (IV)

Neste artigo vamos fazer uma mudança no indicador de mouse a fim de poder efetuar a interação com o indicador de controle, já que a interação está sendo feita de forma errática.
preview
Desenvolvendo um sistema de Replay (Parte 51): Complicando as coisas (III)

Desenvolvendo um sistema de Replay (Parte 51): Complicando as coisas (III)

Neste artigo você irá compreender uma das coisas mais complexas que existe na programação MQL5. A forma correta de adquirir a ID de gráfico, e por que algumas vezes objetos não são plotados no gráfico. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)

Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)

Neste artigo, vamos explorar o novo algoritmo de otimização autoral CTA (Comet Tail Algorithm), que se inspira em objetos cósmicos únicos, nomeadamente em cometas e suas impressionantes caudas, formadas quando se aproximam do Sol. Esse algoritmo é baseado no conceito de movimento dos cometas e suas caudas, e foi projetado para encontrar soluções ótimas em problemas de otimização.
preview
Algoritmo do buraco negro — Black Hole Algorithm (BHA)

Algoritmo do buraco negro — Black Hole Algorithm (BHA)

O algoritmo do buraco negro (Black Hole Algorithm, BHA) utiliza os princípios da gravidade dos buracos negros para otimizar soluções. Neste artigo, vamos explorar como o BHA atrai as melhores soluções, evitando mínimos locais, e por que esse algoritmo se tornou uma ferramenta poderosa para resolver problemas complexos. Descubra como ideias simples podem gerar resultados impressionantes no mundo da otimização.
preview
Arbitragem no Forex: Um bot market maker simples de sintéticos para começar

Arbitragem no Forex: Um bot market maker simples de sintéticos para começar

Hoje vamos analisar meu primeiro robô na área de arbitragem, que é um provedor de liquidez (se é que podemos chamá-lo assim) em ativos sintéticos. Atualmente, esse bot funciona com sucesso como um módulo dentro de um grande sistema baseado em aprendizado de máquina, mas eu resgatei o antigo robô de arbitragem no Forex da nuvem, então vamos olhar para ele e pensar no que podemos fazer com ele hoje.
preview
Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Neste artigo explicarei grande parte da classe C_ChartFloatingRAD. Esta é responsável por fazer com que o Chart Trade funcione. Porém aqui não irei de fato terminar a explicação. A mesma será finalizada no próximo artigo. Já que o conteúdo neste artigo é bastante denso e precisa ser compreendido a fundo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Redefinindo os Indicadores MQL5 e MetaTrader 5

Redefinindo os Indicadores MQL5 e MetaTrader 5

Uma abordagem inovadora para coletar informações de indicadores em MQL5 permite uma análise de dados mais flexível e simplificada, ao possibilitar que os desenvolvedores passem entradas personalizadas para os indicadores para cálculos imediatos. Essa abordagem é particularmente útil para o trading algorítmico, pois fornece maior controle sobre as informações processadas pelos indicadores, indo além das restrições tradicionais.
preview
Simulação de mercado (Parte 16): Sockets (X)

Simulação de mercado (Parte 16): Sockets (X)

Estamos a um passo de concluir este desafio. Porém, quero que você, caro leitor, procure entender primeiro estes dois artigos. Tanto este como o anterior. Isto para que consiga de fato entender o próximo onde abordarei exclusivamente a parte referente a programação em MQL5. Apesar de que ali a coisa será igualmente voltada a ser fácil de entender. Se você não compreender estes dois últimos artigos. Com toda a certeza terá grandes problemas em entender o próximo. O motivo disto é simples: As coisas vão se acumulando. Quando mais coisas é preciso fazer, mais coisas é preciso criar e entender para poder atingir o objetivo.
preview
Simulação de mercado (Parte 10): Sockets (IV)

Simulação de mercado (Parte 10): Sockets (IV)

Aqui neste artigo mostrei o que você precisa fazer para começar a usar o Excel para controlar o MetaTrader 5. Mas faremos isto de uma forma bastante interessante. Para fazer isto iremos usar um Add-in no Excel. Isto para não precisar de fato fazer uso do VBA presente no Excel. Se você não sabe de que Add-in estou falando. Veja este artigo e aprenda como fazer para programar em Python diretamente dentro do Excel.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.
preview
Simplificando a negociação com base em notícias (Parte 4): Aumentando o desempenho

Simplificando a negociação com base em notícias (Parte 4): Aumentando o desempenho

Neste artigo, serão apresentados métodos para melhorar o desempenho do EA no testador de estratégias, além da implementação de um código para dividir o horário dos eventos de notícias em categorias por hora. O acesso a esses eventos será permitido apenas no horário especificado para cada um. Isso permite que o EA gerencie operações de maneira eficiente com base nos eventos, tanto em condições de alta quanto de baixa volatilidade.
preview
Negociação com spreads no mercado Forex usando o fator de sazonalidade

Negociação com spreads no mercado Forex usando o fator de sazonalidade

Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
preview
Dados de mercado sem intermediários: conectando MetaTrader 5 à MOEX via ISS API

Dados de mercado sem intermediários: conectando MetaTrader 5 à MOEX via ISS API

Este artigo propõe uma solução para integrar o MetaTrader 5 com o serviço web ISS da MOEX. São fornecidas utilidades para geração automática de códigos-fonte com base no diretório da API e no índice dos principais elementos do serviço.
preview
Teoria das Categorias em MQL5 (Parte 21): Transformações naturais com LDA

Teoria das Categorias em MQL5 (Parte 21): Transformações naturais com LDA

Este artigo, o 21º de nossa série, continua nossa análise das transformações naturais e de como elas podem ser implementadas usando a análise discriminante linear. Assim como no artigo anterior, a implementação é apresentada no formato de uma classe de sinal.
preview
Exemplo de Otimização Estocástica e Controle Ótimo

Exemplo de Otimização Estocástica e Controle Ótimo

Este Expert Advisor, chamado SMOC (provavelmente abreviação de Stochastic Model Optimal Control), é um exemplo simples de um sistema de negociação algorítmica avançado para o MetaTrader 5. Ele utiliza uma combinação de indicadores técnicos, controle preditivo baseado em modelos e gerenciamento dinâmico de risco para tomar decisões de negociação. O EA incorpora parâmetros adaptativos, dimensionamento de posição baseado em volatilidade e análise de tendências para otimizar seu desempenho em diferentes condições de mercado.
preview
Desenvolvendo um sistema de Replay (Parte 62): Dando play no serviço (III)

Desenvolvendo um sistema de Replay (Parte 62): Dando play no serviço (III)

Neste artigo começaremos a resolver, o detalhe sobre o excesso de ticks, que pode acometer a aplicação, quando usamos dados reais. Tal excesso faz com que o serviço muitas das vezes dificulta a correta temporização a fim de conseguir construir a barra de um minuto dentro da janela adequada.
preview
Simulação de mercado: Iniciando o SQL no MQL5 (I)

Simulação de mercado: Iniciando o SQL no MQL5 (I)

Neste artigo, começaremos a explorar o uso do SQL dentro de um código MQL5. Vemos como podemos cria um banco de dados. Ou melhor dizendo, como podemos criar um arquivo de banco de dados em SQLite, usando para isto dispositivos ou procedimentos contidos dentro da linguagem MQL5. Veremos também, como criar uma tabela e depois como criar uma relação entre tabelas via chave primária e chave estrangeira. Isto tudo, usando novamente o MQL5. Veremos como é simples tornar um código que poderá no futuro ser portado para outras implementações do SQL, usando uma classe para nos ajudar a ocultar a implementação que está sendo criada. E o mais importante de tudo. Veremos que em diversos momentos, podemos correr o risco de fazer algo não dar certo ao usarmos SQL. Isto devido ao fato de que dentro do código MQL5, um código SQL irá ser sempre colocado como sendo uma STRING.
preview
Simulação de mercado (Parte 08): Sockets (II)

Simulação de mercado (Parte 08): Sockets (II)

Que tal criar algo prático usando soquetes? Bem, neste artigo, vamos iniciar a criação de um mini chat. Acompanhe como isto será feito, pois será algo bastante interessante. Lembre-se que o que será mostrado aqui tem como objetivo ser um código puramente didático. Você de fato não deve usar este código de forma comercial ou em uma aplicação finalizada. Pois o mesmo não conta com nenhum tipo de segurança no transporte dos dados. Sendo possível ver o conteúdo do que está sendo transportado pelo soquete.