Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)

Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)

Neste artigo irei mostrar como corrigir duas falhas que se encontram presentes no código. No entanto tais correções foram explicadas para que você, aspirante a programador, consiga entender que nem sempre as coisas irão acontecer como você havia previsto. Mas isto não é motivo para desespero e sim uma oportunidade de aprendizado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Ciência de dados e aprendizado de máquina (Parte 20): Escolha entre LDA e PCA em tarefas de algotrading no MQL5

Ciência de dados e aprendizado de máquina (Parte 20): Escolha entre LDA e PCA em tarefas de algotrading no MQL5

Neste artigo, vamos considerar métodos de redução de dimensionalidade e sua aplicação no ambiente de trading MQL5. Especificamente, vamos estudar as nuances da Análise Discriminante Linear (LDA) e da Análise de Componentes Principais (PCA), bem como analisar sua influência no desenvolvimento de estratégias e na análise de mercado.
preview
Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais

Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais

Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).
preview
Visualizações de negociações  no gráfico (Parte 1): Escolha do período para análise

Visualizações de negociações no gráfico (Parte 1): Escolha do período para análise

Estamos escrevendo do zero um script que facilitará a exportação de capturas de tela das negociações para a análise das entradas de trades. Será conveniente exibir todas as informações necessárias sobre uma negociação em um único gráfico, com a possibilidade de desenhar diferentes timeframes.
preview
Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

Desenvolvendo um EA multimoeda (Parte 8): Realizando testes de carga e processando um novo candle

À medida que avançamos, utilizamos cada vez mais instâncias simultâneas de estratégias de negociação em um único EA. Vamos descobrir até quantas instâncias podemos utilizar antes de nos depararmos com limitações de recursos.
preview
Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização

Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização

Neste artigo, analisaremos o gerador de números aleatórios Mersenne Twister e o compararemos com o gerador padrão do MQL5. Veremos como a qualidade dos geradores de números aleatórios influencia os resultados dos algoritmos de otimização.
preview
Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)

Neste artigo explicarei grande parte da classe C_ChartFloatingRAD. Esta é responsável por fazer com que o Chart Trade funcione. Porém aqui não irei de fato terminar a explicação. A mesma será finalizada no próximo artigo. Já que o conteúdo neste artigo é bastante denso e precisa ser compreendido a fundo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado

Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado

A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
preview
Desenvolvendo um sistema de Replay (Parte 72): Uma comunicação inusitada (I)

Desenvolvendo um sistema de Replay (Parte 72): Uma comunicação inusitada (I)

O que iremos construir será complexo de entender. Por isso, apresentarei apenas o início da construção neste artigo. Leia com calma, pois entender o conteúdo aqui é essencial para o próximo passo. O objetivo deste conteúdo é apenas didático, sem aplicação prática além do aprendizado e estudo dos conceitos apresentados.
preview
Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD

Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.
preview
Algoritmo de Busca Cooperativa Artificial (Artificial Cooperative Search, ACS)

Algoritmo de Busca Cooperativa Artificial (Artificial Cooperative Search, ACS)

Apresentamos o algoritmo Artificial Cooperative Search (ACS). Este método inovador utiliza uma matriz binária e várias populações dinâmicas, baseadas em relações mutualísticas e cooperação, para encontrar rapidamente e com precisão soluções ótimas. A abordagem única do ACS em relação a "predadores" e "presas" permite alcançar excelentes resultados em problemas de otimização numérica.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica

A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.
preview
Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)

Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)

Este artigo apresenta um experimento único que visa examinar o comportamento dos algoritmos de otimização populacional no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade populacional é baixa e alcançar máximos globais. Trabalhar nessa direção fornecerá uma visão mais aprofundada sobre quais algoritmos específicos podem continuar sua busca com sucesso usando coordenadas definidas pelo usuário como ponto de partida e quais fatores influenciam seu sucesso.
preview
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket

Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket

Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
preview
Simulação de mercado (Parte 10): Sockets (IV)

Simulação de mercado (Parte 10): Sockets (IV)

Aqui neste artigo mostrei o que você precisa fazer para começar a usar o Excel para controlar o MetaTrader 5. Mas faremos isto de uma forma bastante interessante. Para fazer isto iremos usar um Add-in no Excel. Isto para não precisar de fato fazer uso do VBA presente no Excel. Se você não sabe de que Add-in estou falando. Veja este artigo e aprenda como fazer para programar em Python diretamente dentro do Excel.
preview
Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX

Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais, que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A anotação de dados direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, aumentar a precisão do modelo e até ajudar o modelo a alcançar um salto qualitativo!
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Técnicas do MQL5 Wizard que você deve conhecer (Parte 25): Testes e Operações em Múltiplos Timeframes

Por padrão, estratégias baseadas em múltiplos timeframes não podem ser testadas em Expert Advisors montados pelo assistente devido à arquitetura de código MQL5 utilizada nas classes de montagem. Exploramos uma possível solução para essa limitação em estratégias que utilizam múltiplos timeframes em um estudo de caso com a média móvel quadrática.
preview
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina

A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
preview
Simulação de mercado (Parte 03): Uma questão de performance

Simulação de mercado (Parte 03): Uma questão de performance

Muitas vezes somos obrigados a dar um passo para trás para logo depois dar alguns passos a frente. Neste artigo irei mostrar todas as mudanças que foram necessárias serem feitas para que os indicadores de Mouse e Chart Trade não viessem a ter a sua performance comprometidas. Como bônus irei já apresentar outras mudanças que ocorreram em outros arquivos de cabeçalho, que serão muito usados no futuro.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert

Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
preview
Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Simulação de mercado (Parte 04): Iniciando a classe C_Orders (I)

Neste artigo vamos começar a montar a classe C_Orders, para poder enviar pedidos ao servidor de negociação. Vamos fazer isto aos pouco. Já que o intuito será explicar o mais detalhadamente possível como isto será feito, via sistema de mensagens.
preview
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I

Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.
preview
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5

Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
preview
As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)

As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)

Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.
preview
Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva

Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva

Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.
preview
Simulação de mercado (Parte 09): Sockets (III)

Simulação de mercado (Parte 09): Sockets (III)

Este artigo é continuação do artigo anterior. Aqui vamos ver como o Expert Advisor será implementado. Mas principalmente como deverá ser feito o código do servidor. Isto por que, o código que foi visto no artigo anterior não é o suficiente para que possamos de fato fazer com que as coisas funcionem como deverão. Então é necessário que você veja ambos artigos para compreender mais profundamente o que estará acontecendo.
preview
Negociação com spreads no mercado Forex usando o fator de sazonalidade

Negociação com spreads no mercado Forex usando o fator de sazonalidade

Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios

Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.
preview
O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5

O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5

Neste artigo, descrevemos a implementação do Algoritmo Iterativo Multicamadas do Método de Agrupamento para Manipulação de Dados em MQL5.
preview
Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA

Neste artigo, analisamos em detalhes os aspectos importantes para a escolha dos dados mais relevantes e de qualidade do mercado Forex e para melhorar o desempenho dos modelos de inteligência artificial.
preview
Colmeia artificial de abelhas (ABHA): Testes e resultados

Colmeia artificial de abelhas (ABHA): Testes e resultados

Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.
preview
Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Algoritmos de otimização populacionais: evolução de grupos sociais (Evolution of Social Groups, ESG)

Neste artigo, consideraremos o princípio de construção de algoritmos multipopulacionais e, como exemplo desse tipo de algoritmos, analisaremos a Evolução de Grupos Sociais (ESG), um novo algoritmo autoral. Analisaremos os conceitos principais, os mecanismos de interação entre populações e as vantagens desse algoritmo, bem como examinaremos seu desempenho em tarefas de otimização.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas

As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.
preview
Classe base de algoritmos populacionais como alicerce para otimização eficiente

Classe base de algoritmos populacionais como alicerce para otimização eficiente

Uma tentativa única de pesquisa para combinar uma série de algoritmos populacionais em uma única classe com o objetivo de simplificar a aplicação dos métodos de otimização. Essa abordagem não apenas abre possibilidades para o desenvolvimento de novos algoritmos, incluindo variantes híbridas, mas também estabelece um banco de testes básico universal. Este banco se torna uma ferramenta chave para a escolha do algoritmo ideal, dependendo da tarefa específica em questão.
preview
Simulação de mercado (Parte 08): Sockets (II)

Simulação de mercado (Parte 08): Sockets (II)

Que tal criar algo prático usando soquetes? Bem, neste artigo, vamos iniciar a criação de um mini chat. Acompanhe como isto será feito, pois será algo bastante interessante. Lembre-se que o que será mostrado aqui tem como objetivo ser um código puramente didático. Você de fato não deve usar este código de forma comercial ou em uma aplicação finalizada. Pois o mesmo não conta com nenhum tipo de segurança no transporte dos dados. Sendo possível ver o conteúdo do que está sendo transportado pelo soquete.
preview
Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)

Algoritmos de otimização de população: Resistência a ficar preso em extremos locais (Parte II)

Continuamos nosso experimento que visa examinar o comportamento dos algoritmos de otimização de população no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade da população é baixa e alcançar máximos globais. Os resultados da pesquisa são fornecidos.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana

A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.
preview
Análise volumétrica com redes neurais como chave para tendências futuras

Análise volumétrica com redes neurais como chave para tendências futuras

O artigo explora a possibilidade de melhorar a previsão de preços com base na análise do volume de negociações, integrando os princípios da análise técnica com a arquitetura de redes neurais LSTM. Dá-se atenção especial à identificação e interpretação de volumes anômalos, uso de clusterização e criação de características baseadas em volume, além de sua definição no contexto de aprendizado de máquina.
preview
Desenvolvendo um sistema de Replay (Parte 76): Um novo Chart Trade (III)

Desenvolvendo um sistema de Replay (Parte 76): Um novo Chart Trade (III)

Neste artigo vamos compreender como o código faltante no artigo anterior, DispatchMessage, funciona. Aqui será feita a introdução do que será visto no próximo artigo. Sendo assim é importante compreender o funcionamento deste procedimento antes de ver o próximo artigo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Simulação de mercado (Parte 16): Sockets (X)

Simulação de mercado (Parte 16): Sockets (X)

Estamos a um passo de concluir este desafio. Porém, quero que você, caro leitor, procure entender primeiro estes dois artigos. Tanto este como o anterior. Isto para que consiga de fato entender o próximo onde abordarei exclusivamente a parte referente a programação em MQL5. Apesar de que ali a coisa será igualmente voltada a ser fácil de entender. Se você não compreender estes dois últimos artigos. Com toda a certeza terá grandes problemas em entender o próximo. O motivo disto é simples: As coisas vão se acumulando. Quando mais coisas é preciso fazer, mais coisas é preciso criar e entender para poder atingir o objetivo.