Artigos sobre análise de dados e estatísticas na MQL5

icon

Muitos traders apreciam artigos sobre modelos matemáticos e teoria das probabilidades. Afinal de contas, a matemática é a base dos indicadores técnicos, e o conhecimento em estatística é necessário para analisar os resultados das operações e desenvolver estratégias.

Leia sobre lógica fuzzy, filtros digitais, perfil do mercado, mapas de Kohonen, redes neurais e muitas outras ferramentas que podem ser usadas para negociação.

Novo artigo
recentes | melhores
preview
Ciência de Dados e Aprendizado de Máquina (Parte 03): Regressões Matriciais

Ciência de Dados e Aprendizado de Máquina (Parte 03): Regressões Matriciais

Desta vez nossos modelos estão sendo feitos por matrizes, o que permite flexibilidade ao mesmo tempo que nos permite fazer modelos poderosos que podem manipular não apenas cinco variáveis independentes, mas também muitas variáveis, desde que permaneçamos dentro dos limites de cálculos de um computador, este artigo será uma leitura interessante, isso é certo.
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar análises posteriores com base nos valores dos indicadores criados assentes na biblioteca para nossos programas. O conceito geral por trás de todas as classes-coleções da biblioteca torna mais fácil encontrar os dados necessários na coleção correspondente, assim, o mesmo será possível na classe que será criada hoje.
preview
Desenvolvendo um fator de qualidade para os EAs

Desenvolvendo um fator de qualidade para os EAs

Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).
preview
Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python

Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 12): Nascimento do SIMULADOR (II)

Desenvolver um simulador pode ser muito mais interessante do que parece. Então vamos dar mais alguns passos nesta direção, pois a coisa está começando a ficar empolgante.
preview
Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Desenvolvendo um sistema de Replay (Parte 49): Complicando as coisas (I)

Aqui neste artigo iremos complicar um pouco as coisa. Fazendo uso do que foi visto nos artigos anteriores, iremos começar a liberar o arquivo de Template, para que o usuário possa fazer uso de um template pessoal. No entanto, irei fazer as mudanças aos poucos, visto que também irei modificar o indicador a fim de proporcionar um alivio ao MetaTrader 5.
preview
Algoritmo de recompra: modelo matemático para aumentar a eficiência

Algoritmo de recompra: modelo matemático para aumentar a eficiência

Neste artigo, usaremos o algoritmo de recompra como um guia para um entendimento mais profundo da eficiência dos sistemas de negociação e começaremos a trabalhar com os princípios gerais de aumentar a eficiência de negociação usando matemática e lógica, bem como aplicar os métodos mais inovadores para aumentar a eficiência no contexto de usar qualquer sistema de negociação.
preview
Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Desenvolvendo um sistema de Replay (Parte 46): Projeto do Chart Trade (V)

Cansado de perder tempo procurando aquele arquivo, que é preciso para fazer a sua aplicação funcionar ?!?! Que tal embutir tudo no executável ? Assim você nunca irá perder tempo procurando as coisas. Sei que muitos fazem uso, exatamente daquela forma de distribuir e guardar as coisas. Mas existe uma maneira bem mais adequada. Pelo menos no que diz respeito a distribuição de executáveis e armazenamento dos mesmos. A forma que irei explicar aqui, pode vim a lhe ser de grande ajuda. Já que você pode usar o próprio MetaTrader 5 como sendo um grande ajudante, assim como o MQL5. Não é algo lá tão complexo, ou difícil de ser entendido.
preview
Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Desenvolvendo um sistema de Replay (Parte 27): Projeto Expert Advisor — Classe C_Mouse (I)

Neste artigo irá nascer a classe C_Mouse. Esta foi pensada de maneira que a programação, seja feita no mais alto nível quanto for possível ser feita. Mas dizer que trabalharemos em alto, ou baixo nível, nada tem haver com questões de colocarmos palavrões ou chavões no meio do código. Longe disto. Trabalhar em alto nível ou de baixo nível, quando se fala em programação, diz o quanto o programa pode ser mais simples ou mais difícil de ser lido por outro programador.
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 53): classe do indicador base abstrato

Trabalhando com séries temporais na biblioteca DoEasy (Parte 53): classe do indicador base abstrato

Neste artigo, veremos a criação de uma classe de indicador abstrato que será posteriormente usada como uma classe base para a criação de objetos de indicadores padrão e personalizados da biblioteca.
preview
Dominando o ONNX: Ponto de virada para traders MQL5

Dominando o ONNX: Ponto de virada para traders MQL5

Mergulhe no mundo do ONNX, um poderoso formato aberto para compartilhar modelos de aprendizado de máquina. Descubra como o uso do ONNX pode revolucionar a negociação algorítmica em MQL5, permitindo que os traders integrem sem obstáculos modelos avançados de inteligência artificial e elevem suas estratégias a um novo patamar. Desvende os segredos da compatibilidade entre plataformas e aprenda a desbloquear todo o potencial do ONNX em sua negociação no MQL5. Melhore sua negociação com este guia detalhado sobre ONNX.
preview
Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Algoritmos populacionais de otimização: Evolução diferencial (Differential Evolution, DE)

Neste artigo, falaremos sobre o algoritmo que apresenta os resultados mais contraditórios de todos os examinados anteriormente, o de evolução diferencial (DE).
preview
Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Desenvolvendo um sistema de Replay (Parte 29): Projeto Expert Advisor — Classe C_Mouse (III)

Agora que a classe C_Mouse foi melhorada. Podemos focar em criar uma classe que será usada para promover uma base completamente diferente de estudos. Mas como expliquei no inicio do artigo, não iremos usar herança ou polimorfismo para gerar esta nova classe. Iremos modificar, ou melhor dizendo, agregar alguns objetos novos a linha de preço. Isto neste primeiro momento, no próximo artigo mostrarei como modificar os estudos. Mas faremos isto sem mexer no código da classe C_Mouse. Sei que na pratica, isto seria mais simples ser feito usando herança ou polimorfismo. No entanto, existem técnicas diferentes para se conseguir a mesma coisa.
preview
Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

Algoritmos de otimização populacional: simulação de têmpera (Simulated Annealing, SA). Parte I

O algoritmo de simulação de têmpera é uma metaheurística inspirada no processo de têmpera de metais. Neste artigo, realizaremos uma análise detalhada do algoritmo e mostraremos como muitas concepções comuns e mitos em torno deste método de otimização popular e amplamente conhecido podem ser equivocados e incompletos. Anúncio da segunda parte do artigo: "Conheça nosso algoritmo autoral de simulação de têmpera isotrópica (Simulated Isotropic Annealing, SIA)!"
preview
Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Desenvolvendo um sistema de Replay (Parte 55): Módulo de controle

Neste artigo iremos implementar o indicador de controle de forma que ele possa o sistema de mensagens que está sendo implementado. Apesar de não ser algo muito complexo de ser feito, você precisa entender alguns detalhes referentes a como fazer a inicialização deste módulo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Desenvolvendo um sistema de Replay (Parte 36): Ajeitando as coisas (II)

Uma das coisas que mais pode complicar a nossa vida como programadores é o fato de supor as coisas. Neste artigo mostrarei o perigo de fazer suposições. Tanto na parte da programação em MQL5, onde você supõem que um tipo terá um dado tamanho. Assim como no uso do MetaTrader 5, onde você supõem que servidores diferentes funcionam da mesma forma.
preview
Análise quantitativa no MQL5: implementando um algoritmo promissor

Análise quantitativa no MQL5: implementando um algoritmo promissor

Vamos explorar o que é a análise quantitativa, como os grandes players a utilizam e criar um dos algoritmos de análise quantitativa na linguagem MQL5.
preview
Redes neurais de maneira fácil (Parte 18): Regras de associação

Redes neurais de maneira fácil (Parte 18): Regras de associação

Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.
preview
Trabalhando com séries temporais na biblioteca DoEasy (Parte 49): indicadores padrão multiperíodos multissímbolos multibuffer

Trabalhando com séries temporais na biblioteca DoEasy (Parte 49): indicadores padrão multiperíodos multissímbolos multibuffer

Neste artigo, modificaremos as classes da biblioteca para permitir a criação de indicadores padrão multissímbolos e multiperíodos que requerem vários buffers de indicador para exibir seus dados.
preview
Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Desenvolvendo um sistema de Replay — Simulação de mercado (Parte 05): Adicionando Previas

Conseguimos desenvolver, uma forma de fazer com que o replay de mercado, fosse executado dentro de um tempo bastante realista e aceitável. Vamos continuar nosso projeto. Agora iremos adicionar dados de forma a ter um comportamento melhor do replay.
preview
Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

Algoritmos de otimização populacionais: Busca por cardume de peixes (FSS - Fish School Search)

O FSS (Fish School Search) é um algoritmo avançado de otimização inspirado no comportamento dos peixes que nadam em cardumes. Aproximadamente 80% desses peixes nadam em comunidades organizadas de parentes, o que tem sido comprovado como uma estratégia importante para melhorar a eficiência de procura por alimento e proteção contra predadores.
preview
Desenvolvendo um sistema de Replay (Parte 28): Projeto Expert Advisor — Classe C_Mouse (II)

Desenvolvendo um sistema de Replay (Parte 28): Projeto Expert Advisor — Classe C_Mouse (II)

Quanto de fato os primeiros sistema capazes de fatorar alguma coisa, começaram a ser produzidos. Tudo tinha que ser feito por engenheiros com grande conhecimento, no que estava sendo projetado. Isto nos primórdios da computação, onde se quer existia algum tipo de terminal, para que fosse possível programar algo. Conforme ia se desenvolvendo, e o interesse de que mais pessoas também conseguisse criar algo, começou surgir novas ideias e meios, de programar aquelas máquinas, que antes era feito mudando a posição dos conectores. Assim começamos a ter os primeiros terminais.
preview
Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

Ciência de dados e aprendizado de máquina (Parte 11): Classificador Naive Bayes e teoria da probabilidade na negociação

A negociação com base em probabilidades pode ser comparada a caminhar sobre uma corda bamba - ela requer precisão, equilíbrio e uma compreensão clara do risco envolvido. No mundo do trading, a probabilidade é fundamental. É ela que determina o resultado: sucesso ou fracasso, lucro ou prejuízo. Ao aproveitar as possibilidades da probabilidade, os traders podem tomar decisões mais fundamentadas, gerenciar os riscos de maneira mais eficiente e alcançar seus objetivos financeiros. Não importa se você é um investidor experiente ou um trader iniciante, entender a probabilidade pode ser a chave para desbloquear seu potencial de negociação. Neste artigo, exploraremos o fascinante mundo do trading baseado em probabilidades e mostraremos como levar seu modo de negociar a um nível superior.
preview
O modelo de movimento de preços e suas principais disposições (Parte 3): Cálculo dos parâmetros ótimos para negociação em bolsa

O modelo de movimento de preços e suas principais disposições (Parte 3): Cálculo dos parâmetros ótimos para negociação em bolsa

Dentro da abordagem de engenharia desenvolvida pelo autor, baseada na teoria da probabilidade, são determinadas as condições para abrir uma posição lucrativa e calculados os valores ótimos - maximizadores do lucro - para o take profit e o stop loss.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 06): Primeiras melhorias (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 06): Primeiras melhorias (I)

Neste artigo vamos começar a estabilizar todo o sistema. Pois sem que o sistema esteja de fato estabilizado, podemos correr risco de não conseguir cumprir os próximos passos.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

A transformada de Fourier é um método de decompor uma onda de pontos de dados em possíveis partes constituintes que foi introduzida por Joseph Fourier. Esse recurso pode ser útil para os traders, e é isso que abordaremos neste artigo.
preview
Desenvolvendo um sistema de Replay (Parte 43): Projeto do Chart Trade (II)

Desenvolvendo um sistema de Replay (Parte 43): Projeto do Chart Trade (II)

Grande parte das pessoas que querem, ou desejam aprender a programar, não fazem de fato ideia, do que estão fazendo. O que elas fazem é tentar criar as coisas de uma determinada maneira. No entanto, quando programamos não estamos de fato tentando criar um solução. Se você tentar fazer isto, desta forma irá gerar mais problemas do que realmente uma solução. Aqui iremos fazer algo um pouco mais avançado, e por consequência diferente.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 24): FOREX (V)

Aqui estamos retirando o bloqueio de simulação baseada na plotagem LAST, e adicionando um ponto de entrada para este tipo de simulação. Agora prestem atenção ao fato de que todo o funcionamento, irá se basear no sistema do forex. Sendo que a única diferença, aqui nesta rotina, é o fato de que estaremos separando uma simulação BID, de uma LAST. Mas a questão de randomização do tempo e a sua correção para ser utilizado pela classe C_Replay, é a mesma em ambos modos de simulação. Isto é uma coisa boa, já que se modificarmos um dos modos, o outro irá se beneficiar, pelo menos no que rege a parte do tempo entre os tickets
preview
Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)

Redes neurais de maneira fácil (Parte 27): Aprendizado Q profundo (DQN)

Continuamos nosso estudo sobre aprendizado por reforço. E, neste artigo, vamos nos familiarizar com o método de aprendizado Q profundo. Com esse método, a equipe do DeepMind criou um modelo que pode superar um humano ao jogar jogos do Atari. Acho que será útil avaliar as possibilidades de tal tecnologia para resolver problemas de negociação.
preview
Algoritmos de otimização populacionais: Algoritmo do morcego

Algoritmos de otimização populacionais: Algoritmo do morcego

Hoje estudaremos o algoritmo do morcego (Bat algorithm, BA), que possui convergência incrível em funções suaves.
preview
Medindo o valor informativo do Indicador

Medindo o valor informativo do Indicador

O aprendizado de máquina se tornou uma técnica popular de desenvolvimento de estratégias. Na negociação, tradicionalmente, mais atenção é dada à maximização da lucratividade e à precisão das previsões. Enquanto isso, o processamento de dados usado para construir modelos preditivos permanece na periferia. Neste artigo, discutimos o uso do conceito de entropia para avaliar a adequação de indicadores na construção de modelos preditivos, conforme descrito no livro Testing and Tuning Market Trading Systems escrito por Timothy Masters.
preview
Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

Algoritmos de otimização populacional: busca por difusão estocástica (Stochastic Diffusion Search, SDS)

O artigo aborda a busca por difusão estocástica, SDS, um algoritmo de otimização muito poderoso e prático, baseado nos princípios de passeio aleatório. O algoritmo permite encontrar soluções ótimas em espaços multidimensionais complexos, possuindo uma alta velocidade de convergência e a capacidade de evitar extremos locais.
preview
Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
preview
Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados

Ciência de Dados e Aprendizado de Máquina (Parte 14): aplicando mapas de Kohonen nos mercados

Deseja descobrir uma nova metodologia de negociação que facilite a orientação em mercados complexos e voláteis? Explore os mapas de Kohonen - uma versão inovadora de redes neurais artificiais, capazes de identificar regularidades e tendências ocultas nos dados do mercado. Neste texto, analisaremos a funcionalidade dos mapas de Kohonen e a forma de utilizá-los na elaboração de estratégias de negociação eficazes. Estou convencido de que esta abordagem inédita será do interesse de traders novatos e experientes.
preview
Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 20): FOREX (I)

intenção inicial deste artigo, não será cobrir todas as características do FOREX. Mas sim e apenas, adequar o sistema, de forma que você possa fazer no mínimo, um replay de mercado. Já a simulação, ficará para um outro momento. No entanto, caso você não os tenha os ticks, e tenha apenas as barras. Pode com algum trabalho, simular possíveis transações, que possam ter ocorrido no FOREX. Isto até que eu mostre como adaptar o simulador. O fato de se tentar trabalhar com dados vindos do FOREX, dentro do sistema, sem que ele seja modificado. Faz com que ocorra erros de range.
preview
Desenvolvendo um sistema de Replay (Parte 31): Projeto Expert Advisor - Classe C_Mouse (V)

Desenvolvendo um sistema de Replay (Parte 31): Projeto Expert Advisor - Classe C_Mouse (V)

Desenvolver uma forma de colocar o cronometro, de modo que durante um replay / simulação, ele consiga nos dizer quanto tempo falta, pode parecer a principio uma tarefa simples e de rápida solução. Muitos iriam simplesmente tentar adaptar e usar o mesmo sistema que é usado quando temos o servidor de negociação ao nosso lado. Mas aqui mora um ponto que muitos talvez não se atentem ao pensar em tal solução. Quando você está fazendo um replay, e isto para não falar do fato da simulação, o relógio não funciona da mesma forma. Este tipo de coisa torna complexo construir tal sistema.
preview
Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos

Nos mercados de forex, é muito desafiador prever a tendência futura sem ter uma ideia do passado. Poucos modelos de machine learning são capazes de fazer previsões futuras considerando valores passados. Neste artigo, vamos discutir como podemos usar modelos clássicos (não específicos para séries temporais) de Inteligência Artificial para superar o mercado.
preview
Sistema de negociação de arbitragem de alta frequência em Python usando MetaTrader 5

Sistema de negociação de arbitragem de alta frequência em Python usando MetaTrader 5

Criamos um sistema de arbitragem legal aos olhos das corretoras, que gera milhares de preços sintéticos no mercado Forex, os analisa e negocia com sucesso e de forma lucrativa.
preview
Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.