MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。
preview
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
preview
知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター

知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター

ビル・ウィリアムズが考案したアリゲーターインジケーターは、明確なシグナルを生成し、他のインジケーターと組み合わせて使用されることが多い、多機能なトレンド識別インジケーターです。MQL5ウィザードのクラスとアセンブリを活用することで、パターンベースでさまざまなシグナルをテストできるため、このインジケーターも検討対象となります。
preview
MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

この記事では、MQL5経済指標カレンダーを使用して、取引戦略を強化するための実用的なニュースダッシュボードパネルを作成します。まず、イベント名、重要度、タイミングなどの重要な要素に焦点を当ててレイアウトを設計し、その後、MQL5内でのセットアップに進みます。最後に、最も関連性の高いニュースのみを表示するフィルタリングシステムを実装し、トレーダーが影響力のある経済イベントに迅速にアクセスできるようにします。
preview
古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

古典的な戦略を再構築する(第11回):移動平均クロスオーバー(II)

移動平均とストキャスティクスオシレーターは、トレンドに従う取引シグナルを生成するために使用できます。ただし、これらのシグナルは価格変動が発生した後にのみ観察されます。AIを使用することで、テクニカルインジケーターに内在するこの遅れを効果的に克服できます。この記事では、既存の取引戦略を改善できるような、完全に自律的なAI搭載のエキスパートアドバイザー(EA)を作成する方法を説明します。最も古い取引戦略であっても、改善することは可能です。
preview
知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表

一目均衡表はトレンド識別システムとして機能する有名な日本の指標です。以前の同様の記事と同様に、パターンごとにこれを調べ、MQL5ウィザードライブラリクラスとアセンブリの助けを借りて、その戦略とテストレポートも評価します。
preview
取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

取引におけるニューラルネットワーク:複雑な軌道予測法(Traj-LLM)

この記事では、自動運転車の動作の分野における問題を解決するために開発された興味深い軌道予測方法を紹介します。この手法の著者は、さまざまな建築ソリューションの最良の要素を組み合わせました。
preview
取引におけるニューラルネットワーク:状態空間モデル

取引におけるニューラルネットワーク:状態空間モデル

これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
preview
ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ギャンのSquare of 9に基づいて、時間と価格を2乗したインジケーターを作成します。コードを準備し、プラットフォームで異なる時間間隔でインジケーターをテストします。
preview
ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成

ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成

ギャン理論の本質は何でしょうか。ギャンアングルはどのように構築されるのでしょうか。本記事では、MetaTrader5向けのギャンアングルインジケーターを作成します。
preview
取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

取引におけるニューラルネットワーク:独立したチャネルへのグローバル情報の注入(InjectTST)

最新のマルチモーダル時系列予測方法のほとんどは、独立チャネルアプローチを使用しています。これにより、同じ時系列の異なるチャネルの自然な依存関係が無視されます。2つのアプローチ(独立チャネルと混合チャネル)を賢く使用することが、モデルのパフォーマンスを向上させる鍵となります。
preview
取引におけるニューラルネットワーク:TEMPO法の実践結果

取引におけるニューラルネットワーク:TEMPO法の実践結果

TEMPO法について引き続き学習します。この記事では、実際の履歴データに対する提案されたアプローチの実際の有効性を評価します。
preview
取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。
preview
取引におけるニューラルネットワーク:時系列予測のための軽量モデル

取引におけるニューラルネットワーク:時系列予測のための軽量モデル

軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。
preview
取引におけるカオス理論(第2回):さらなる研究

取引におけるカオス理論(第2回):さらなる研究

金融市場におけるカオス理論の探究を続けます。今回は通貨やその他の資産の分析への適用性について考えます。
preview
多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。
preview
取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

取引におけるニューラルネットワーク:Adam-mini最適化によるメモリ消費量の削減

モデルの訓練と収束プロセスの効率を向上させるためのアプローチの1つが、最適化手法の改良です。Adam-miniは、従来のAdamアルゴリズムを改良し、より効率的な適応型最適化を実現することを目的とした手法です。
preview
リプレイシステムの開発(第59回):新たな未来

リプレイシステムの開発(第59回):新たな未来

さまざまなアイデアを適切に理解することで、より少ない労力でより多くのことを実現できます。この記事では、サービスがチャートと対話する前にテンプレートを構成する必要がある理由について説明します。また、マウスポインタを改良し、より多くの機能を持たせることについても考察します。
preview
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
preview
リプレイシステムの開発(第58回):サービスへの復帰

リプレイシステムの開発(第58回):サービスへの復帰

リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
preview
リプレイシステムの開発(第57回):テストサービスについて

リプレイシステムの開発(第57回):テストサービスについて

注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
preview
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
preview
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
preview
多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。
preview
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。
preview
取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。
preview
取引におけるニューラルネットワーク:時系列の区分線形表現

取引におけるニューラルネットワーク:時系列の区分線形表現

本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。
preview
ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練

さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。
preview
多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更

多通貨エキスパートアドバイザーの開発(第14回):リスクマネージャーにおける適応型ボリューム変更

以前開発されたリスクマネージャーには基本的な機能のみが含まれていました。取引戦略のロジックに干渉することなく取引結果を向上させるために、どのような開発の可能性があるかを検討してみましょう。
preview
リプレイシステムの開発(第56回):モジュールの適応

リプレイシステムの開発(第56回):モジュールの適応

モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
preview
リプレイシステムの開発(第55回):コントロールモジュール

リプレイシステムの開発(第55回):コントロールモジュール

この記事では、開発中のメッセージシステムに統合できるように、コントロールインジケーターを実装します。それほど難しくはありませんが、このモジュールの初期化について理解しておくべき細かい点がいくつかあります。ここで提示される資料は教育目的のみに使用されます。示された概念を学習し習得する以外の目的での利用は決して想定されていません。
preview
MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする

MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする

この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。
preview
MacOSでのMetaTrader 5

MacOSでのMetaTrader 5

macOS上のMetaTrader 5取引プラットフォーム用の特別なインストーラーを提供します。これは、アプリケーションをネイティブにインストールできる本格的なウィザードです。インストーラーは、システムの識別、最新のWineバージョンのダウンロードとインストール、設定の適用、その後のMetaTraderのインストールまで、すべての手順を自動で実行します。インストールが完了すると、すぐにプラットフォームを使用できます。
preview
ニュース取引が簡単に(第5回):取引の実施(II)

ニュース取引が簡単に(第5回):取引の実施(II)

この記事では、取引管理クラスを拡張し、ニュースイベントを取引するための買い逆指値注文(買いストップ注文)と売り逆指値注文(売りストップ注文)を追加します。また、オーバーナイト取引を防ぐために、これらの注文に有効期限の制約を実装します。さらに、逆指値注文(ストップ注文)を使用する際に発生しうるスリッページ、特にニュースイベント中に発生する可能性のあるスリッページを防止または最小限に抑えるために、スリッページ関数をエキスパートアドバイザー(EA)に組み込みます。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。
preview
MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

MQL5で取引管理者パネルを作成する(第5回):2要素認証(2FA)

本日は、現在開発中の取引管理パネルのセキュリティ強化について説明します。Telegram APIを統合し、2要素認証(2FA)を実現する新しいセキュリティ戦略にMQL5を実装する方法を探ります。このディスカッションでは、MQL5を活用してセキュリティ対策を強化する方法について貴重な洞察を得ることができます。さらに、MathRand関数の機能に焦点を当て、セキュリティフレームワーク内でどのように効果的に活用できるかを検討します。さらに詳しく知りたい方は、読み続けてください。
preview
日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

日足レンジブレイクアウト戦略に基づくMQL5 EAの作成

この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。
preview
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
preview
ニュース取引が簡単に(第4回):パフォーマンス向上

ニュース取引が簡単に(第4回):パフォーマンス向上

この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。
preview
MQL5で取引管理者パネルを作成する(第4回):ログインセキュリティ層

MQL5で取引管理者パネルを作成する(第4回):ログインセキュリティ層

悪意のある人物が取引管理者室に侵入し、世界中の何百万ものトレーダーに貴重な洞察を伝えるために使用されるコンピューターと管理パネルにアクセスしたと想像してください。このような侵入は、誤解を招くメッセージの不正送信や、意図しないアクションをトリガーするボタンのランダムクリックなど、悲惨な結果につながる可能性があります。このディスカッションでは、MQL5のセキュリティ対策と、これらの脅威から保護するために管理パネルに実装した新しいセキュリティ機能について説明します。セキュリティプロトコルを強化することで、通信チャネルを保護し、グローバルな取引コミュニティの信頼を維持することを目指しています。この記事のディスカッションでさらに詳しい情報を見つけてください。