MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト

ADXによる取引システムの設計方法を学ぶ

今回は、最も人気のある指標を使って取引システムを設計する連載の続きとして、ADX (Average Directional Index)指標についてお話します。この指標を理解するために詳しく学び、簡単な戦略でその使い方を学びます。深く学ぶことで、より多くの洞察得ることができ、それをよりよく活用することができるのです。

ストキャスティクスによる取引システムの設計方法を学ぶ

この記事では、学習シリーズを継続します。今回は、基本的な知識の新しいブロックを構築するために、最も人気があり、便利な指標の1つであるストキャスティックスオシレータ指標を使用して取引システムを設計する方法を学びます。

データサイエンスと機械学習(第02回):ロジスティック回帰

データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。

一からの取引エキスパートアドバイザーの開発(第11部):両建て注文システム

この記事では、両建て注文システムを作成します。先物契約は、トレーダーを極度に苦しめる資産タイプですが、なにがそんなに難しいのでしょうか。

MACDによる取引システムの設計方法を学ぶ

今回は、このシリーズの新しいツール、MACD(Moving Average Convergence Divergence、移動平均収束発散)に基づいた取引システムの設計方法について学びます。

CCIによる取引システムの設計方法を学ぶ

今回は、取引システムの設計方法を学ぶ連載の新しい記事として、CCI(商品チャンネル指数、Commodities Channel Index)を紹介し、その詳細を説明し、この指標に基づいた取引システムの作り方を紹介します。

一からの取引エキスパートアドバイザーの開発(第10部):カスタムインジケータへのアクセス

エキスパートアドバイザー(EA)でカスタムインジケータに直接アクセスするにはどうすればよいでしょうか。取引EAが本当に役立つのは、カスタムインジケータを使用できる場合のみです。それ以外の場合、取引EAはコードと命令のセットにすぎません。

一からの取引エキスパートアドバイザーの開発(第7部):価格別出来高の追加(I)

価格別出来高は、現存する最も強力なインジケータの1つです。ある程度の自信を持って取引するには、チャートにはこのインジケータが必須です。このインジケータはよく「テープリーディング」を好むトレーダーに使われますが、プライスアクションのみを使用して取引する場合にも活用できます。

データサイエンスと機械学習(第01回):線形回帰

私たちトレーダーは、数字に基づいた判断をするよう、システムと自分自身を訓練する時期に来ています。目ではなく、直感で信じるのは、これが世界が向かっているところだということです。波の方向に垂直に移動しましょう。

単一チャート上の複数インジケータ(第06部):MetaTrader 5をRADシステムに変える(II)

前回の記事では、MetaTrader 5のオブジェクトを使ってChart Tradeを作成し、プラットフォームをRADシステムに変える方法を紹介しました。このシステムは非常によく機能しており、読者の多くは、提案されたシステムの機能を拡張できるようなライブラリを作成することをお考えになったのではないでしょうか。これに基づいて、より直感的で使い勝手の良いEAを開発することも可能でしょう。

RSIによる取引システムの設計方法を学ぶ

今回は、取引の世界で最も人気があり、一般的に使用されている指標の1つであるRSIを紹介します。この指標を使用した取引システムの設計方法を学びます。

モメンタムによるトレーディングシステムの設計方法を学ぶ

前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。

単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)

プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。

エンベロープによる取引システムの設計方法を学ぶ

この記事では、バンドで取引する方法の1つを紹介します。今回はエンベロープについて検討し、それに基づいてストラテジーを作成するのがいかに簡単であるかを見ていきます。

ボリンジャーバンドによる取引システムの設計方法を学ぶ

この記事では、取引の世界で最も人気のある指標の1つであるボリンジャーバンドについて学びます。テクニカル分析を検討し、ボリンジャーバンド指標に基づいてアルゴリズム取引システムを設計する方法を確認します。

単一チャート上の複数インジケータ(第04部): エキスパートアドバイザーに進む

以前の記事では、複数のサブウィンドウでインジケータを作成する方法を説明しました。これは、カスタムインジケータを使用するときに興味深いものになります。今回は、エキスパートアドバイザーに複数のウィンドウを追加する方法を説明します。

MVCデザインパターンとその可能なアプリケーション(第2部): 3つのコンポーネント間の相互作用の図

本稿は、前の記事で説明したMQLプログラムのMVCパターンのトピックの続きです。この記事では、パターンの3つのコンポーネント間の可能な相互作用の図を検討します。

さまざまな移動平均システムを設計する方法を学ぶ

この記事の主題である移動平均自体を使用する場合でも、任意のストラテジーに基づいて生成されたシグナルをフィルタリングするために使用できるストラテジーはたくさんあります。この記事の目的は、移動平均ストラテジーのいくつかと、アルゴリズム取引システムを設計する方法を共有することです。

アルゴリズム取引システムを設計する理由と方法を学ぶ

この記事では、MQL5のいくつかの基本に言及した後で、単純なアルゴリズム取引システムを設計することによって初心者がアルゴリズム取引システム(エキスパートアドバイザー)を設計するためのMQLの基本を示します。

マーケットからエキスパートアドバイザーを選択する正しい方法

この記事では、エキスパートアドバイザーを購入する際に注意すべき重要なポイントのいくつかを検討します。また、利益を増やし、お金を賢く使ってこの支出から利益を得る方法を探します。また、記事を読み終われば、シンプルで無料の製品を使用しても収益を得られることがわかると思います。

取引における数学:シャープレシオとソルティノレシオ

投資収益率は、投資家や初心者のトレーダーが取引効率の分析に使用する最も明白な指標です。プロのトレーダーは、シャープレシオやソルティノレシオなどのより信頼性の高いツールを使用して、ストラテジーを分析します。

一からの取引エキスパートアドバイザーの開発

この記事では、最小限のプログラミングで自動売買ロボットを開発する方法について説明します。

MQL5の行列とベクトル

特別な「matrix」と「vector」データ型を使用すると、数学表記に非常に近いコードを作成することができます。行列とベクトルのメソッドを使用すると、計算でネストされたループを作成したり配列で正しいインデックスを作成したりする必要がなくなるため、複雑なプログラムの開発における信頼性と速度が向上します。

MetaTrader用の高度なEAコンストラクター - BotBrains.app

この記事では、自動売買ロボットのためのノーコード開発プラットフォームであるBotBrains.appの機能を紹介します。自動売買ロボットを作成するために、コードを書く必要はありません。必要なブロックをスキームにドラッグアンドドロップし、パラメータを設定して、それらの間の接続を確立するだけです。

マーケット価格予測に対する汎用回帰モデル(第2部): 自然、技術、社会の過渡関数

本稿は前稿からの論理的続編で、最初の記事で出された結論を確認する事実にハイライトを当てています。これらの事実は、その出版後10年以内に明らかになったもので、マーケット価格変化のパターンを説明する3つの検出された動的過渡関数を中心としています。

MQL言語を使用したゼロからのディープニューラルネットワークプログラミング

この記事は、MQL4/5言語を使用してディープニューラルネットワークを最初から作成する方法を読者に教えることを目的としています。

時間の取扱い(第2部): 関数

証券会社のオフセットとGMTを自動で特定します。おそらく不十分な答えしかくれない(欠如した時間について説明することはいとわないでしょうが)証券会社にサポートを求める代わりに、時間が変わる週に証券会社が価格をどのように計算するかを自分で見ます。結局のところ、私たちはPCを持っているので、面倒な手作業ではなくプログラムを使用します。

MQL5.communityでのチャネルとグループチャットの使用

MQL5.com Webサイトには、世界中のトレーダーが集まっています。ユーザーは記事を公開し、無料コードを共有し、市場で製品を販売し、フリーランスの注文を実行し、取引シグナルをコピーできます。フォーラム、トレーダーチャット、MetaTraderチャネルでは彼らとコミュニケーションをとることができます。

多色ローソク足を作成するためのオプションの探究

この記事では、ローソク足でカスタマイズされたインジケーターを作成する可能性について説明し、それらの長所と短所を指摘します。

より優れたプログラマー(第02部): MQL5プログラマーとして成功するためにやめなければいけない5つのこと

この記事は、プログラミングのキャリアを向上させたい人にとって必読です。本連載は、どんなに経験が豊富な読者でも最高のプログラマーになれることを目的としています。議論されたアイデアは、MQL5プログラミングの初心者だけでなくプロにも役立ちます。

パターンと例(第I部): マルチトップ

これは、アルゴリズム取引の枠組みにおける反転パターンに関連する連載の最初の記事です。まず、最も興味深いパターンファミリーから始めます。これは、ダブルトップパターンとダブルボトムパターンに由来するものです。

スワップ(第I部):ロックと合成ポジション

この記事では、スワップ取引手法の古典的な概念を拡張しようとします。私が、この概念に特別な注意を払う価値があり、この概念が研究に絶対的に推奨されるという結論に達した理由を説明します。

ニューラルネットワークが簡単に(第13回): Batch Normalization

前回の記事では、ニューラルネットワーク訓練の品質を向上させることを目的とした手法の説明を開始しました。本稿では、このトピックを継続し、別のアプローチであるデータのBatch Normalizationについて説明します。

ニューラルネットワークが簡単に(第12回): ドロップアウト

ニューラルネットワークを研究する次のステップとして、ニューラルネットワークの訓練中に収束を高める手法を検討することをお勧めします。そのような手法はいくつかありますが、本稿では、それらの1つである「ドロップアウト」について考察します。

組み合わせスキャルピング:過去の取引の分析による将来の取引パフォーマンスの向上

本稿では、自動取引システムの公立を高めることを目的としたテクノロジーについて説明します。アイデアが簡単に説明され、その基盤、可能性、および欠点についてが説明されます。

MVCデザインパターンとその可能なアプリケーション

本稿では、人気高いMVCパターンと、MQLプログラムでの使用の可能性、長所、短所について説明します。アイデアは、既存コードをモデル、ビュー、コントローラの3つの別々のコンポーネントに分割することです。

ニューラルネットワークが簡単に(第11部): GPTについて

GPT-3は現在存在する言語ニューラルネットワークの中でおそらく最も高度なモデルの1つであり、その最大バリアントには1,750億個のパラメータが含まれています。もちろん、家庭にあるようなPCでそのような怪物を作成するつもりはありませんが、どのアーキテクチャソリューションを作業に使用し、それらからどのように利益を得ることができるかは確認することができます。