MQL5言語での戦略テストに関する記事

icon

どのように取引戦略を開発し、記述し、テストするか、どのように最適なシステムパラメータを見つけるか、どのようにその結果を分析するか?MetaTraderプラットフォームは自動売買ロボットの開発者に、トレーディングアイデアを速く正確にテストするための豊富な機能を提供します。この記事を読んで、どのように複数通貨ロボットをテストするか、どのように最適化を目的としてMQL5Cloud Networkを使用するかを学んでください。

自動取引システムの開発者はテスティングの基本とストラテジーテスターの中のティック生成アルゴリズムについて読むことから始めることをお勧めします。

新しい記事を追加
最新 | ベスト
preview
多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
preview
リプレイシステムの開発(第62回):サービスの再生(III)

リプレイシステムの開発(第62回):サービスの再生(III)

この記事では、実際のデータを使用する際にアプリケーションのパフォーマンスに影響を及ぼす可能性のある「ティック過剰」の問題について取り上げます。このティック過剰は、1分足を適切なタイミングで構築するうえで支障となることがよくあります。
preview
リプレイシステムの開発(第61回):サービスの再生(II)

リプレイシステムの開発(第61回):サービスの再生(II)

この記事では、リプレイ/シミュレーションシステムをより効率的かつ安全に動作させるための変更点について解説します。また、クラスを最大限に活用したいと考えている方にも役立つ情報を取り上げます。さらに、クラスを使用する際にコードのパフォーマンスを低下させるMQL5特有の問題点を取り上げ、それに対する具体的な解決策についても説明します。
preview
Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

移動平均線のクロスオーバーに基づくゴールデンクロスおよびデッドクロス戦略は、長期的な市場トレンドを見極める上で最も信頼性の高い指標の一つであることをご存知でしょうか。ゴールデンクロスは、短期移動平均線が長期移動平均線を上回るときに強気トレンドの到来を示します。一方、デッドクロスは、短期移動平均線が長期線を下回ることで弱気トレンドの兆候を示します。これらの戦略は非常にシンプルでありながら効果的ですが、手動で運用すると機会の逸失やエントリーの遅れが発生しやすいという課題があります。しかし、MQL5を活用してTrend Constraintエキスパートアドバイザー(EA)内で自動化することで、これらの戦略は独立して機能し、市場の反転に迅速かつ効率的に対応できるようになります。また、制約付きの戦略と組み合わせることで、広範なトレンドと整合性を保つことができます。このアプローチにより、反転戦略とトレンドフォロー戦略のシームレスな統合が実現され、精密なエントリーと一貫したパフォーマンス向上をもたらします。
preview
ウィリアム・ギャンの手法(第3回):占星術は効果があるのか

ウィリアム・ギャンの手法(第3回):占星術は効果があるのか

惑星や星の位置は金融市場に影響を与えるのでしょうか。統計とビッグデータを武器に、星と株価チャートが交差する世界への刺激的な旅に出ましょう。
preview
リプレイシステムの開発(第60回):サービスの再生(I)

リプレイシステムの開発(第60回):サービスの再生(I)

これまで長い間インジケーターだけに取り組んできましたが、今度はサービスを再び稼働させて、提供されたデータに基づいてチャートがどのように構築されるかを確認するときが来ました。しかし、すべてがそれほど単純ではないので、先に何が待ち受けているのかを理解するために注意深くならなければなりません。
preview
人工藻類アルゴリズム(AAA)

人工藻類アルゴリズム(AAA)

本稿では、微細藻類に特徴的な生物学的プロセスに基づく人工藻類アルゴリズム(AAA)について考察します。このアルゴリズムには、螺旋運動、進化過程、適応過程が含まれており、最適化問題を解くことができます。この記事では、AAAが機能する原理と、数学的モデリングにおけるその可能性について詳しく分析し、自然とアルゴリズムによる解とのつながりを強調しています。
preview
ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成

ギャンのSquare of 9に基づいて、時間と価格を2乗したインジケーターを作成します。コードを準備し、プラットフォームで異なる時間間隔でインジケーターをテストします。
preview
動物移動最適化(AMO)アルゴリズム

動物移動最適化(AMO)アルゴリズム

この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。
preview
人工蜂の巣アルゴリズム(ABHA):テストと結果

人工蜂の巣アルゴリズム(ABHA):テストと結果

この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。
preview
多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。
preview
リプレイシステムの開発(第59回):新たな未来

リプレイシステムの開発(第59回):新たな未来

さまざまなアイデアを適切に理解することで、より少ない労力でより多くのことを実現できます。この記事では、サービスがチャートと対話する前にテンプレートを構成する必要がある理由について説明します。また、マウスポインタを改良し、より多くの機能を持たせることについても考察します。
preview
カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

カスタムインジケーター:ネット口座の部分的なエントリー、エグジット、リバーサル取引のプロット

この記事では、MQL5でインジケーターを作成する非標準的な方法について説明します。トレンドやチャートパターンに注目するのではなく、部分的なエントリーやエグジットを含めた独自のポジション管理を目的とします。取引履歴やポジションに関連する動的マトリックスと、いくつかの取引機能を広範に活用し、これらの取引がおこなわれた場所をチャート上に表示します。
preview
リプレイシステムの開発(第58回):サービスへの復帰

リプレイシステムの開発(第58回):サービスへの復帰

リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。
preview
リプレイシステムの開発(第57回):テストサービスについて

リプレイシステムの開発(第57回):テストサービスについて

注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
preview
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
preview
多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。
preview
適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。
preview
人工電界アルゴリズム(AEFA)

人工電界アルゴリズム(AEFA)

この記事では、クーロンの静電気力の法則に触発された人工電界アルゴリズム(AEFA: Artificial Electric Field Algorithm)を紹介します。このアルゴリズムは、荷電粒子とその相互作用を利用して複雑な最適化問題を解決するために電気現象をシミュレートします。AEFAは、自然法則に基づいた他のアルゴリズムと比較して、独自の特性を示します。
preview
リプレイシステムの開発(第56回):モジュールの適応

リプレイシステムの開発(第56回):モジュールの適応

モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
preview
リプレイシステムの開発(第55回):コントロールモジュール

リプレイシステムの開発(第55回):コントロールモジュール

この記事では、開発中のメッセージシステムに統合できるように、コントロールインジケーターを実装します。それほど難しくはありませんが、このモジュールの初期化について理解しておくべき細かい点がいくつかあります。ここで提示される資料は教育目的のみに使用されます。示された概念を学習し習得する以外の目的での利用は決して想定されていません。
preview
知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。
preview
化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

化学反応最適化(CRO)アルゴリズム(第2回):組み立てと結果

第2回では、化学演算子を1つのアルゴリズムに集め、その結果の詳細な分析を紹介します。化学反応最適化(CRO)法がテスト機能に関する複雑な問題の解決にどのように対処するかを見てみましょう。
preview
リプレイシステムの開発(第54回):最初のモジュールの誕生

リプレイシステムの開発(第54回):最初のモジュールの誕生

この記事では、リプレイ/シミュレーターシステムで使用するための、他の目的にも汎用的に使用できる、実際に機能するモジュールの最初のものを組み立てる方法について説明します。マウスモジュールです。
preview
化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学

化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学

この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
preview
リプレイシステムの開発(第53回):物事は複雑になる(V)

リプレイシステムの開発(第53回):物事は複雑になる(V)

今回は、あまり理解されていない重要なトピックを取り上げます。「カスタムイベント」です。これは危険です。これらの要素の長所と短所を解説します。このトピックは、MQL5やその他の言語でプロのプログラマーになりたい人にとって重要な鍵となります。ここではMQL5とMetaTrader 5に焦点を当てます。
preview
リプレイシステムの開発(第52回):物事は複雑になる(IV)

リプレイシステムの開発(第52回):物事は複雑になる(IV)

この記事では、信頼性と安定性のある操作を確保するために、マウスポインタを変更してコントロール指標との対話を有効にします。
preview
多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択

多通貨エキスパートアドバイザーの開発(第13回):第2段階の自動化 - グループへの選択

自動最適化の第1段階はすでに実装されています。いくつかの基準に従ってさまざま銘柄と時間枠の最適化を実行し、各パスの結果に関する情報をデータベースに保存します。ここで、最初の段階で見つかったものから最適なパラメータセットのグループを選択します。
preview
最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

最も注目すべき人工協調探索アルゴリズムの修正(ACSm)

ここでは、ACSアルゴリズムの進化、つまり収束特性とアルゴリズムの効率性を向上させることを目的とした3つの変更について検討します。主要な最適化アルゴリズムの1つを変換します。行列の修正から母集団形成に関する革新的なアプローチまでをカバーします。
preview
リプレイシステムの開発(第51回):物事は複雑になる(III)

リプレイシステムの開発(第51回):物事は複雑になる(III)

この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
preview
MQL5入門(第9回):MQL5のオブジェクトの理解と使用

MQL5入門(第9回):MQL5のオブジェクトの理解と使用

現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。
preview
人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。
preview
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。
preview
リプレイシステムの開発(第50回):物事は複雑になる(II)

リプレイシステムの開発(第50回):物事は複雑になる(II)

チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。
preview
リプレイシステムの開発(第49回):物事は複雑になる(I)

リプレイシステムの開発(第49回):物事は複雑になる(I)

この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。
preview
リプレイシステムの開発(第48回):サービスの概念を理解する

リプレイシステムの開発(第48回):サービスの概念を理解する

何か新しいことを学んでみませんか。この記事では、スクリプトをサービスに変換する方法と、それがなぜ便利なのかについて説明します。
preview
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

今回は、前回の記事で作成した指標を元に、MQL5で最初のエキスパートアドバイザー(EA)を作成します。リスク管理を含め、取引プロセスを自動化するために必要な全機能を紹介します。これにより、手動の取引執行から自動化されたシステムへとスムーズに移行できるメリットがあります。